Abstract:Total column water vapor is an important factor for the weather and climate. This study apply deep learning based multiple regression to map the TCWV with elements that can improve spatiotemporal prediction. In this study, we predict the TCWV with the use of ERA5 that is the fifth generation ECMWF atmospheric reanalysis of the global climate. We use an appropriate deep learning based multiple regression algorithm using Keras library to improve nonlinear prediction between Total Column water vapor and predictors as Mean sea level pressure, Surface pressure, Sea surface temperature, 100 metre U wind component, 100 metre V wind component, 10 metre U wind component, 10 metre V wind component, 2 metre dew point temperature, 2 metre temperature. The results obtained permit to build a predictor which modelling TCWV with a mean abs error (MAE) equal to 3.60 kg/m2 and a coefficient of determination R2 equal to 0.90.
Abstract:Deep learning provide successful applications in many fields. Recently, machines learning are involved for oceans remote sensing applications. In this study, we use and compare about eight (8) deep learning estimators for retrieval of a mainly pigment of phytoplankton. Depending on the water case and the multiple instruments simultaneouslyobserving the earth on a variety of platforms, several algorithm are used to estimate the chlolophyll-a from marine reflectance. By using a long-term multi-sensor time-series of satellite ocean-colour data, as MODIS, SeaWifs, VIIRS, MERIS, etc, we make a unique deep network model able to establish a relationship between sea surface reflectance and chlorophyll-a from any measurement satellite sensor over West Africa. These data fusion take into account the bias between case water and instruments. We construct several chlorophyll-a concentration prediction deep learning based models, compare them and therefore use the best for our study. Results obtained for accuracy training and test are quite good. The mean absolute error are very low and vary between 0,07 to 0,13 mg/m3.
Abstract:Identifying and characterizing the patient's blood samples is indispensable in diagnostics of malignance suspicious. A painstaking and sometimes subjective task is used in laboratories to manually classify white blood cells. Neural mathematical methods as deep learnings can be very useful in the automated recognition of blood cells. This study uses a particular type of deep learning i.e., convolutional neural networks (CNNs or ConvNets) for image recognition of the four (4) blood cell types (neutrophil, eosinophil, lymphocyte and monocyte) and to enable it to tag them employing a dataset of blood cells with labels for the corresponding cell types. The elements of the database are the input of our CNN and they allowed us to create learning models for the image recognition/classification of the blood cells. We evaluated the recognition performance and outputs learned by the networks in order to implement a neural image recognition model capable of distinguishing polynuclear cells (neutrophil and eosinophil) from those of mononuclear cells (lymphocyte and monocyte). The validation accuracy is 97.77%.