Abstract:In this paper, we combine two independent detection methods for identifying fake news: the algorithm VAGO uses semantic rules combined with NLP techniques to measure vagueness and subjectivity in texts, while the classifier FAKE-CLF relies on Convolutional Neural Network classification and supervised deep learning to classify texts as biased or legitimate. We compare the results of the two methods on four corpora. We find a positive correlation between the vagueness and subjectivity measures obtained by VAGO, and the classification of text as biased by FAKE-CLF. The comparison yields mutual benefits: VAGO helps explain the results of FAKE-CLF. Conversely FAKE-CLF helps us corroborate and expand VAGO's database. The use of two complementary techniques (rule-based vs data-driven) proves a fruitful approach for the challenging problem of identifying fake news.
Abstract:Nowadays ontologies present a growing interest in Data Fusion applications. As a matter of fact, the ontologies are seen as a semantic tool for describing and reasoning about sensor data, objects, relations and general domain theories. In addition, uncertainty is perhaps one of the most important characteristics of the data and information handled by Data Fusion. However, the fundamental nature of ontologies implies that ontologies describe only asserted and veracious facts of the world. Different probabilistic, fuzzy and evidential approaches already exist to fill this gap; this paper recaps the most popular tools. However none of the tools meets exactly our purposes. Therefore, we constructed a Dempster-Shafer ontology that can be imported into any specific domain ontology and that enables us to instantiate it in an uncertain manner. We also developed a Java application that enables reasoning about these uncertain ontological instances.