Abstract:Sentiment analysis aims to extract and express a person's perception, opinions and emotions towards an entity, object, product and a service, enabling businesses to obtain feedback from the consumers. The increasing popularity of the social networks and users' tendency towards sharing their feelings, expressions and opinions in text, visual and audio content has opened new opportunities and challenges in sentiment analysis. While sentiment analysis of text streams has been widely explored in the literature, sentiment analysis of images and videos is relatively new. This article introduces visual sentiment analysis and contrasts it with textual sentiment analysis with emphasis on the opportunities and challenges in this nascent research area. We also propose a deep visual sentiment analyzer for disaster-related images as a use-case, covering different aspects of visual sentiment analysis starting from data collection, annotation, model selection, implementation and evaluations. We believe such rigorous analysis will provide a baseline for future research in the domain.
Abstract:Social media have been widely exploited to detect and gather relevant information about opinions and events. However, the relevance of the information is very subjective and rather depends on the application and the end-users. In this article, we tackle a specific facet of social media data processing, namely the sentiment analysis of disaster-related images by considering people's opinions, attitudes, feelings and emotions. We analyze how visual sentiment analysis can improve the results for the end-users/beneficiaries in terms of mining information from social media. We also identify the challenges and related applications, which could help defining a benchmark for future research efforts in visual sentiment analysis.