Abstract:Full-vectorial finite difference method with perfectly matched layers boundaries is used to identify the single mode operation region of submicron rib waveguides fabricated using sili-con-on-insulator material system. Achieving high mode power confinement factors is emphasized while maintaining the single mode operation. As opposed to the case of large cross-section rib waveguides, theoretical single mode conditions have been demonstrated to hold for sub-micron waveguides with accuracy approaching 100%. Both, the deeply and the shallowly etched rib waveguides have been considered and the single mode condition for entire sub-micrometer range is presented while adhering to design specific mode confinement requirements.
Abstract:GRAND features both soft-input and hard-input variants that are well suited to efficient hardware implementations that can be characterized with achievable average and worst-case decoding latency. This paper introduces step-GRAND, a soft-input variant of GRAND that, in addition to achieving appealing average decoding latency, also reduces the worst-case decoding latency of the corresponding hardware implementation. The hardware implementation results demonstrate that the proposed step-GRAND can decode CA-polar code $(128,105+11)$ with an average information throughput of $47.7$ Gbps at the target FER of $\leq10^{-7}$. Furthermore, the proposed step-GRAND hardware is $10\times$ more area efficient than the previous soft-input ORBGRAND hardware implementation, and its worst-case latency is $\frac{1}{6.8}\times$ that of the previous ORBGRAND hardware.