Abstract:Full-vectorial finite difference method with perfectly matched layers boundaries is used to identify the single mode operation region of submicron rib waveguides fabricated using sili-con-on-insulator material system. Achieving high mode power confinement factors is emphasized while maintaining the single mode operation. As opposed to the case of large cross-section rib waveguides, theoretical single mode conditions have been demonstrated to hold for sub-micron waveguides with accuracy approaching 100%. Both, the deeply and the shallowly etched rib waveguides have been considered and the single mode condition for entire sub-micrometer range is presented while adhering to design specific mode confinement requirements.
Abstract:Performance optimization associated with optical modulators requires reasonably accurate predictive models for key figures of merit. Interleaved PN-junction topology offers the maximum mode/junction overlap and is the most efficient modulator in depletion-mode of operation. Due to its structure, the accurate modelling process must be fully three-dimensional, which is a nontrivial computational problem. This paper presents a rigorous 3D model for the modulation efficiency of silicon-on-insulator interleaved junction optical phase modulators with submicron dimensions. Solution of Drift-Diffusion and Poisson equations were carried out on 3D finite-element-mesh and Maxwell equations were solved using Finite-Difference-Time-Domain (FDTD) method on 3D Yee-cells. Whole of the modelling process has been detailed and all the coefficients required in the model are presented. Model validation suggests < 10% RMS error.