Abstract:We leverage pre-trained language models to solve the task of complex NER for two low-resource languages: Chinese and Spanish. We use the technique of Whole Word Masking(WWM) to boost the performance of masked language modeling objective on large and unsupervised corpora. We experiment with multiple neural network architectures, incorporating CRF, BiLSTMs, and Linear Classifiers on top of a fine-tuned BERT layer. All our models outperform the baseline by a significant margin and our best performing model obtains a competitive position on the evaluation leaderboard for the blind test set.
Abstract:We investigate the task of complex NER for the English language. The task is non-trivial due to the semantic ambiguity of the textual structure and the rarity of occurrence of such entities in the prevalent literature. Using pre-trained language models such as BERT, we obtain a competitive performance on this task. We qualitatively analyze the performance of multiple architectures for this task. All our models are able to outperform the baseline by a significant margin. Our best performing model beats the baseline F1-score by over 9%.