Abstract:The humanities, like many other areas of society, are currently undergoing major changes in the wake of digital transformation. However, in order to make collection of digitised material in this area easily accessible, we often still lack adequate search functionality. For instance, digital archives for textiles offer keyword search, which is fairly well understood, and arrange their content following a certain taxonomy, but search functionality at the level of thread structure is still missing. To facilitate the clustering and search, we introduce an approach for recognising similar weaving patterns based on their structures for textile archives. We first represent textile structures using hypergraphs and extract multisets of k-neighbourhoods describing weaving patterns from these graphs. Then, the resulting multisets are clustered using various distance measures and various clustering algorithms (K-Means for simplicity and hierarchical agglomerative algorithms for precision). We evaluate the different variants of our approach experimentally, showing that this can be implemented efficiently (meaning it has linear complexity), and demonstrate its quality to query and cluster datasets containing large textile samples. As, to the est of our knowledge, this is the first practical approach for explicitly modelling complex and irregular weaving patterns usable for retrieval, we aim at establishing a solid baseline.
Abstract:We propose a novel approach for measuring the similarity between weaving patterns that can provide similarity-based search functionality for textile archives. We represent textile structures using hypergraphs and extract multisets of k-neighborhoods from these graphs. The resulting multisets are then compared using Jaccard coefficients, Hamming distances, and cosine measures. We evaluate the different variants of our similarity measure experimentally, showing that it can be implemented efficiently and illustrating its quality using it to cluster and query a data set containing more than a thousand textile samples.