Abstract:This paper provides a theoretical analysis of a new learning problem for recommender systems where users provide feedback by comparing pairs of items instead of rating them individually. We assume that comparisons stem from latent user and item features, which reduces the task of predicting preferences to learning these features from comparison data. Similar to the classical matrix factorization problem, the main challenge in this learning task is that the resulting loss function is nonconvex. Our analysis shows that the loss function exhibits (restricted) strong convexity near the true solution, which ensures gradient-based methods converge exponentially, given an appropriate warm start. Importantly, this result holds in a sparse data regime, where each user compares only a few pairs of items. Our main technical contribution is to extend certain concentration inequalities commonly used in matrix completion to our model. Our work demonstrates that learning personalized recommendations from comparison data is computationally and statistically efficient.
Abstract:A message passing algorithm is derived for recovering communities within a graph generated by a variation of the Barab\'{a}si-Albert preferential attachment model. The estimator is assumed to know the arrival times, or order of attachment, of the vertices. The derivation of the algorithm is based on belief propagation under an independence assumption. Two precursors to the message passing algorithm are analyzed: the first is a degree thresholding (DT) algorithm and the second is an algorithm based on the arrival times of the children (C) of a given vertex, where the children of a given vertex are the vertices that attached to it. Comparison of the performance of the algorithms shows it is beneficial to know the arrival times, not just the number, of the children. The probability of correct classification of a vertex is asymptotically determined by the fraction of vertices arriving before it. Two extensions of Algorithm C are given: the first is based on joint likelihood of the children of a fixed set of vertices; it can sometimes be used to seed the message passing algorithm. The second is the message passing algorithm. Simulation results are given.
Abstract:A variation of the preferential attachment random graph model of Barab\'asi and Albert is defined that incorporates planted communities. The graph is built progressively, with new vertices attaching to the existing ones one-by-one. At every step, the incoming vertex is randomly assigned a label, which represents a community it belongs to. This vertex then chooses certain vertices as its neighbors, with the choice of each vertex being proportional to the degree of the vertex multiplied by an affinity depending on the labels of the new vertex and a potential neighbor. It is shown that the fraction of half-edges attached to vertices with a given label converges almost surely for some classes of affinity matrices. In addition, the empirical degree distribution for the set of vertices with a given label converges to a heavy tailed distribution, such that the tail decay parameter can be different for different communities. Our proof method may be of independent interest, both for the classical Barab\'asi -Albert model and for other possible extensions.