Abstract:In many visual systems, visual tracking often bases on RGB image sequences, in which some targets are invalid in low-light conditions, and tracking performance is thus affected significantly. Introducing other modalities such as depth and infrared data is an effective way to handle imaging limitations of individual sources, but multi-modal imaging platforms usually require elaborate designs and cannot be applied in many real-world applications at present. Near-infrared (NIR) imaging becomes an essential part of many surveillance cameras, whose imaging is switchable between RGB and NIR based on the light intensity. These two modalities are heterogeneous with very different visual properties and thus bring big challenges for visual tracking. However, existing works have not studied this challenging problem. In this work, we address the cross-modal object tracking problem and contribute a new video dataset, including 654 cross-modal image sequences with over 481K frames in total, and the average video length is more than 735 frames. To promote the research and development of cross-modal object tracking, we propose a new algorithm, which learns the modality-aware target representation to mitigate the appearance gap between RGB and NIR modalities in the tracking process. It is plug-and-play and could thus be flexibly embedded into different tracking frameworks. Extensive experiments on the dataset are conducted, and we demonstrate the effectiveness of the proposed algorithm in two representative tracking frameworks against 17 state-of-the-art tracking methods. We will release the dataset for free academic usage, dataset download link and code will be released soon.
Abstract:Person search is to detect all persons and identify the query persons from detected persons in the image without proposals and bounding boxes, which is different from person re-identification. In this paper, we propose a fusing multi-task convolutional neural network(FMT-CNN) to tackle the correlation and heterogeneity of detection and re-identification with a single convolutional neural network. We focus on how the interplay of person detection and person re-identification affects the overall performance. We employ person labels in region proposal network to produce features for person re-identification and person detection network, which can improve the accuracy of detection and re-identification simultaneously. We also use a multiple loss to train our re-identification network. Experiment results on CUHK-SYSU Person Search dataset show that the performance of our proposed method is superior to state-of-the-art approaches in both mAP and top-1.