Abstract:Digital Elevation Model (DEM) is an essential aspect in the remote sensing (RS) domain to analyze various applications related to surface elevations. Here, we address the generation of high-resolution (HR) DEMs using HR multi-spectral (MX) satellite imagery as a guide by introducing a novel hybrid transformer model consisting of Densely connected Multi-Residual Block (DMRB) and multi-headed Frequency Selective Graph Attention (M-FSGA). To promptly regulate this process, we utilize the notion of discriminator spatial maps as the conditional attention to the MX guide. Further, we present a novel adversarial objective related to optimizing Sinkhorn distance with classical GAN. In this regard, we provide both theoretical and empirical substantiation of better performance in terms of vanishing gradient issues and numerical convergence. Based on our experiments on 4 different DEM datasets, we demonstrate both qualitative and quantitative comparisons with available baseline methods and show that the performance of our proposed model is superior to others with sharper details and minimal errors.
Abstract:Recent progress in image deblurring techniques focuses mainly on operating in both frequency and spatial domains using the Fourier transform (FT) properties. However, their performance is limited due to the dependency of FT on stationary signals and its lack of capability to extract spatial-frequency properties. In this paper, we propose a novel approach based on the Fractional Fourier Transform (FRFT), a unified spatial-frequency representation leveraging both spatial and frequency components simultaneously, making it ideal for processing non-stationary signals like images. Specifically, we introduce a Fractional Fourier Transformer (F2former), where we combine the classical fractional Fourier based Wiener deconvolution (F2WD) as well as a multi-branch encoder-decoder transformer based on a new fractional frequency aware transformer block (F2TB). We design F2TB consisting of a fractional frequency aware self-attention (F2SA) to estimate element-wise product attention based on important frequency components and a novel feed-forward network based on frequency division multiplexing (FM-FFN) to refine high and low frequency features separately for efficient latent clear image restoration. Experimental results for the cases of both motion deblurring as well as defocus deblurring show that the performance of our proposed method is superior to other state-of-the-art (SOTA) approaches.
Abstract:As the prevalence of data-driven technologies in healthcare continues to rise, concerns regarding data privacy and security become increasingly paramount. This thesis aims to address the vulnerability of personalized healthcare models, particularly in the context of ECG monitoring, to adversarial attacks that compromise patient privacy. We propose an approach termed "Machine Unlearning" to mitigate the impact of exposed data points on machine learning models, thereby enhancing model robustness against adversarial attacks while preserving individual privacy. Specifically, we investigate the efficacy of Machine Unlearning in the context of personalized ECG monitoring, utilizing a dataset of clinical ECG recordings. Our methodology involves training a deep neural classifier on ECG data and fine-tuning the model for individual patients. We demonstrate the susceptibility of fine-tuned models to adversarial attacks, such as the Fast Gradient Sign Method (FGSM), which can exploit additional data points in personalized models. To address this vulnerability, we propose a Machine Unlearning algorithm that selectively removes sensitive data points from fine-tuned models, effectively enhancing model resilience against adversarial manipulation. Experimental results demonstrate the effectiveness of our approach in mitigating the impact of adversarial attacks while maintaining the pre-trained model accuracy.
Abstract:Clouds in optical satellite images are a major concern since their presence hinders the ability to carry accurate analysis as well as processing. Presence of clouds also affects the image tasking schedule and results in wastage of valuable storage space on ground as well as space-based systems. Due to these reasons, deriving accurate cloud masks from optical remote-sensing images is an important task. Traditional methods such as threshold-based, spatial filtering for cloud detection in satellite images suffer from lack of accuracy. In recent years, deep learning algorithms have emerged as a promising approach to solve image segmentation problems as it allows pixel-level classification and semantic-level segmentation. In this paper, we introduce a deep-learning model based on hybrid transformer architecture for effective cloud mask generation named CLiSA - Cloud segmentation via Lipschitz Stable Attention network. In this context, we propose an concept of orthogonal self-attention combined with hierarchical cross attention model, and we validate its Lipschitz stability theoretically and empirically. We design the whole setup under adversarial setting in presence of Lov\'asz-Softmax loss. We demonstrate both qualitative and quantitative outcomes for multiple satellite image datasets including Landsat-8, Sentinel-2, and Cartosat-2s. Performing comparative study we show that our model performs preferably against other state-of-the-art methods and also provides better generalization in precise cloud extraction from satellite multi-spectral (MX) images. We also showcase different ablation studies to endorse our choices corresponding to different architectural elements and objective functions.
Abstract:Digital Elevation Model (DEM) is an essential aspect in the remote sensing domain to analyze and explore different applications related to surface elevation information. In this study, we intend to address the generation of high-resolution DEMs using high-resolution multi-spectral (MX) satellite imagery by incorporating adversarial learning. To promptly regulate this process, we utilize the notion of polarized self-attention of discriminator spatial maps as well as introduce a Densely connected Multi-Residual Block (DMRB) module to assist in efficient gradient flow. Further, we present an objective function related to optimizing Sinkhorn distance with traditional GAN to improve the stability of adversarial learning. In this regard, we provide both theoretical and empirical substantiation of better performance in terms of vanishing gradient issues and numerical convergence. We demonstrate both qualitative and quantitative outcomes with available state-of-the-art methods. Based on our experiments on DEM datasets of Shuttle Radar Topographic Mission (SRTM) and Cartosat-1, we show that the proposed model performs preferably against other learning-based state-of-the-art methods. We also generate and visualize several high-resolution DEMs covering terrains with diverse signatures to show the performance of our model.