Abstract:With the widespread adoption of large language models (LLMs) in numerous applications, the challenge of factuality and the propensity for hallucinations raises significant concerns. To address this issue, particularly in retrieval-augmented in-context learning, we introduce the hierarchical graph of thoughts (HGOT), a structured, multi-layered graph approach designed to enhance the retrieval of pertinent passages during in-context learning. The framework utilizes the emergent planning capabilities of LLMs, employing the divide-and-conquer strategy to break down complex queries into manageable sub-queries. It refines self-consistency majority voting for answer selection, which incorporates the recently proposed citation recall and precision metrics to assess the quality of thoughts, linking an answer's credibility intrinsically to the thought's quality. This methodology introduces a weighted system in majority voting, prioritizing answers based on the citation quality of their thoughts. Additionally, we propose a scoring mechanism for evaluating retrieved passages, considering factors such as citation frequency and quality, self-consistency confidence, and the retrieval module's ranking. Experiments reveal that HGOT outperforms other retrieval-augmented in-context learning methods, including Demonstrate-Search-Predict (DSP), ReAct, Self-Ask, and Retrieve-then-Read on different datasets by as much as $7\%$, demonstrating its efficacy in enhancing the factuality of LLMs.
Abstract:Open intent detection, a crucial aspect of natural language understanding, involves the identification of previously unseen intents in user-generated text. Despite the progress made in this field, challenges persist in handling new combinations of language components, which is essential for compositional generalization. In this paper, we present a case study exploring the use of ChatGPT as a data augmentation technique to enhance compositional generalization in open intent detection tasks. We begin by discussing the limitations of existing benchmarks in evaluating this problem, highlighting the need for constructing datasets for addressing compositional generalization in open intent detection tasks. By incorporating synthetic data generated by ChatGPT into the training process, we demonstrate that our approach can effectively improve model performance. Rigorous evaluation of multiple benchmarks reveals that our method outperforms existing techniques and significantly enhances open intent detection capabilities. Our findings underscore the potential of large language models like ChatGPT for data augmentation in natural language understanding tasks.
Abstract:With the recent surge of NLP technologies in the financial domain, banks and other financial entities have adopted virtual agents (VA) to assist customers. A challenging problem for VAs in this domain is determining a user's reason or intent for contacting the VA, especially when the intent was unseen or open during the VA's training. One method for handling open intents is adaptive decision boundary (ADB) post-processing, which learns tight decision boundaries from intent representations to separate known and open intents. We propose incorporating two methods for supervised pre-training of intent representations: prefix-tuning and fine-tuning just the last layer of a large language model (LLM). With this proposal, our accuracy is 1.63% - 2.07% higher than the prior state-of-the-art ADB method for open intent classification on the banking77 benchmark amongst others. Notably, we only supplement the original ADB model with 0.1% additional trainable parameters. Ablation studies also determine that our method yields better results than full fine-tuning the entire model. We hypothesize that our findings could stimulate a new optimal method of downstream tuning that combines parameter efficient tuning modules with fine-tuning a subset of the base model's layers.