Abstract:How well the heart is functioning can be quantified through measurements of myocardial deformation via echocardiography. Clinical assessment of cardiac function is generally focused on global indices of relative shortening, however, territorial, and segmental strain indices have shown to be abnormal in regions of myocardial disease, such as scar. In this work, we propose a single framework to predict myocardial disease substrates at global, territorial, and segmental levels using regional myocardial strain traces as input to a convolutional neural network (CNN)-based classification algorithm. An anatomically meaningful representation of the input data from the clinically standard bullseye representation to a multi-channel 2D image is proposed, to formulate the task as an image classification problem, thus enabling the use of state-of-the-art neural network configurations. A Fully Convolutional Network (FCN) is trained to detect and localize myocardial scar from regional left ventricular (LV) strain patterns. Simulated regional strain data from a controlled dataset of virtual patients with varying degrees and locations of myocardial scar is used for training and validation. The proposed method successfully detects and localizes the scars on 98% of the 5490 left ventricle (LV) segments of the 305 patients in the test set using strain traces only. Due to the sparse existence of scar, only 10% of the LV segments in the virtual patient cohort have scar. Taking the imbalance into account, the class balanced accuracy is calculated as 95%. The performance is reported on global, territorial, and segmental levels. The proposed method proves successful on the strain traces of the virtual cohort and offers the potential to solve the regional myocardial scar detection problem on the strain traces of the real patient cohorts.
Abstract:Due to privacy issues and limited amount of publicly available labeled datasets in the domain of medical imaging, we propose an image generation pipeline to synthesize 3D echocardiographic images with corresponding ground truth labels, to alleviate the need for data collection and for laborious and error-prone human labeling of images for subsequent Deep Learning (DL) tasks. The proposed method utilizes detailed anatomical segmentations of the heart as ground truth label sources. This initial dataset is combined with a second dataset made up of real 3D echocardiographic images to train a Generative Adversarial Network (GAN) to synthesize realistic 3D cardiovascular Ultrasound images paired with ground truth labels. To generate the synthetic 3D dataset, the trained GAN uses high resolution anatomical models from Computed Tomography (CT) as input. A qualitative analysis of the synthesized images showed that the main structures of the heart are well delineated and closely follow the labels obtained from the anatomical models. To assess the usability of these synthetic images for DL tasks, segmentation algorithms were trained to delineate the left ventricle, left atrium, and myocardium. A quantitative analysis of the 3D segmentations given by the models trained with the synthetic images indicated the potential use of this GAN approach to generate 3D synthetic data, use the data to train DL models for different clinical tasks, and therefore tackle the problem of scarcity of 3D labeled echocardiography datasets.
Abstract:Currently, medical image domain translation operations show a high demand from researchers and clinicians. Amongst other capabilities, this task allows the generation of new medical images with sufficiently high image quality, making them clinically relevant. Deep Learning (DL) architectures, most specifically deep generative models, are widely used to generate and translate images from one domain to another. The proposed framework relies on an adversarial Denoising Diffusion Model (DDM) to synthesize echocardiography images and perform domain translation. Contrary to Generative Adversarial Networks (GANs), DDMs are able to generate high quality image samples with a large diversity. If a DDM is combined with a GAN, this ability to generate new data is completed at an even faster sampling time. In this work we trained an adversarial DDM combined with a GAN to learn the reverse denoising process, relying on a guide image, making sure relevant anatomical structures of each echocardiography image were kept and represented on the generated image samples. For several domain translation operations, the results verified that such generative model was able to synthesize high quality image samples: MSE: 11.50 +/- 3.69, PSNR (dB): 30.48 +/- 0.09, SSIM: 0.47 +/- 0.03. The proposed method showed high generalization ability, introducing a framework to create echocardiography images suitable to be used for clinical research purposes.