Abstract:Large Language Models (LLMs) have the unique capability to understand and generate human-like text from input queries. When fine-tuned, these models show enhanced performance on domain-specific queries. OpenAI highlights the process of fine-tuning, stating: "To fine-tune a model, you are required to provide at least 10 examples. We typically see clear improvements from fine-tuning on 50 to 100 training examples, but the right number varies greatly based on the exact use case." This study extends this concept to the integration of LLMs within Retrieval-Augmented Generation (RAG) pipelines, which aim to improve accuracy and relevance by leveraging external corpus data for information retrieval. However, RAG's promise of delivering optimal responses often falls short in complex query scenarios. This study aims to specifically examine the effects of fine-tuning LLMs on their ability to extract and integrate contextual data to enhance the performance of RAG systems across multiple domains. We evaluate the impact of fine-tuning on the LLMs' capacity for data extraction and contextual understanding by comparing the accuracy and completeness of fine-tuned models against baseline performances across datasets from multiple domains. Our findings indicate that fine-tuning resulted in a decline in performance compared to the baseline models, contrary to the improvements observed in standalone LLM applications as suggested by OpenAI. This study highlights the need for vigorous investigation and validation of fine-tuned models for domain-specific tasks.
Abstract:Large language models (LLMs) enable state-of-the-art semantic capabilities to be added to software systems such as semantic search of unstructured documents and text generation. However, these models are computationally expensive. At scale, the cost of serving thousands of users increases massively affecting also user experience. To address this problem, semantic caches are used to check for answers to similar queries (that may have been phrased differently) without hitting the LLM service. Due to the nature of these semantic cache techniques that rely on query embeddings, there is a high chance of errors impacting user confidence in the system. Adopting semantic cache techniques usually requires testing the effectiveness of a semantic cache (accurate cache hits and misses) which requires a labelled test set of similar queries and responses which is often unavailable. In this paper, we present VaryGen, an approach for using LLMs for test input generation that produces similar questions from unstructured text documents. Our novel approach uses the reasoning capabilities of LLMs to 1) adapt queries to the domain, 2) synthesise subtle variations to queries, and 3) evaluate the synthesised test dataset. We evaluated our approach in the domain of a student question and answer system by qualitatively analysing 100 generated queries and result pairs, and conducting an empirical case study with an open source semantic cache. Our results show that query pairs satisfy human expectations of similarity and our generated data demonstrates failure cases of a semantic cache. Additionally, we also evaluate our approach on Qasper dataset. This work is an important first step into test input generation for semantic applications and presents considerations for practitioners when calibrating a semantic cache.
Abstract:Document-based Question-Answering (QA) tasks are crucial for precise information retrieval. While some existing work focus on evaluating large language model's performance on retrieving and answering questions from documents, assessing the LLMs' performance on QA types that require exact answer selection from predefined options and numerical extraction is yet to be fully assessed. In this paper, we specifically focus on this underexplored context and conduct empirical analysis of LLMs (GPT-4 and GPT 3.5) on question types, including single-choice, yes-no, multiple-choice, and number extraction questions from documents. We use the Cogtale dataset for evaluation, which provide human expert-tagged responses, offering a robust benchmark for precision and factual grounding. We found that LLMs, particularly GPT-4, can precisely answer many single-choice and yes-no questions given relevant context, demonstrating their efficacy in information retrieval tasks. However, their performance diminishes when confronted with multiple-choice and number extraction formats, lowering the overall performance of the model on this task, indicating that these models may not be reliable for the task. This limits the applications of LLMs on applications demanding precise information extraction from documents, such as meta-analysis tasks. However, these findings hinge on the assumption that the retrievers furnish pertinent context necessary for accurate responses, emphasizing the need for further research on the efficacy of retriever mechanisms in enhancing question-answering performance. Our work offers a framework for ongoing dataset evaluation, ensuring that LLM applications for information retrieval and document analysis continue to meet evolving standards.