Abstract:Deep learning is becoming increasingly adopted in business and industry due to its ability to transform large quantities of data into high-performing models. These models, however, are generally regarded as black boxes, which, in spite of their performance, could prevent their use. In this context, the field of eXplainable AI attempts to develop techniques that temper the impenetrable nature of the models and promote a level of understanding of their behavior. Here we present our contribution to XAI methods in the form of a framework that we term SpecXAI, which is based on the spectral characterization of the entire network. We show how this framework can be used to not only understand the network but also manipulate it into a linear interpretable symbolic representation.
Abstract:We explore the interpretability of 3D geometric deep learning models in the context of Computer-Aided Design (CAD). The field of parametric CAD can be limited by the difficulty of expressing high-level design concepts in terms of a few numeric parameters. In this paper, we use a deep learning architectures to encode high dimensional 3D shapes into a vectorized latent representation that can be used to describe arbitrary concepts. Specifically, we train a simple auto-encoder to parameterize a dataset of complex shapes. To understand the latent encoded space, we use the idea of Concept Activation Vectors (CAV) to reinterpret the latent space in terms of user-defined concepts. This allows modification of a reference design to exhibit more or fewer characteristics of a chosen concept or group of concepts. We also test the statistical significance of the identified concepts and determine the sensitivity of a physical quantity of interest across the dataset.