Abstract:This article explores human-horse interactions as a metaphor for understanding and designing effective human-AI partnerships. Drawing on the long history of human collaboration with horses, we propose that AI, like horses, should complement rather than replace human capabilities. We move beyond traditional benchmarks such as the Turing test, which emphasize AI's ability to mimic human intelligence, and instead advocate for a symbiotic relationship where distinct intelligences enhance each other. We analyze key elements of human-horse relationships: trust, communication, and mutual adaptability, to highlight essential principles for human-AI collaboration. Trust is critical in both partnerships, built through predictability and shared understanding, while communication and feedback loops foster mutual adaptability. We further discuss the importance of taming and habituation in shaping these interactions, likening it to how humans train AI to perform reliably and ethically in real-world settings. The article also addresses the asymmetry of responsibility, where humans ultimately bear the greater burden of oversight and ethical judgment. Finally, we emphasize that long-term commitment and continuous learning are vital in both human-horse and human-AI relationships, as ongoing interaction refines the partnership and increases mutual adaptability. By drawing on these insights from human-horse interactions, we offer a vision for designing AI systems that are trustworthy, adaptable, and capable of fostering symbiotic human-AI partnerships.
Abstract:Knowledge graphs (KGs) represent connections and relationships between real-world entities. We propose a link prediction framework for KGs named Enrichment-Driven GrAph Reasoner (EDGAR), which infers new edges by mining entity-local rules. This approach leverages enrichment analysis, a well-established statistical method used to identify mechanisms common to sets of differentially expressed genes. EDGAR's inference results are inherently explainable and rankable, with p-values indicating the statistical significance of each enrichment-based rule. We demonstrate the framework's effectiveness on a large-scale biomedical KG, ROBOKOP, focusing on drug repurposing for Alzheimer disease (AD) as a case study. Initially, we extracted 14 known drugs from the KG and identified 20 contextual biomarkers through enrichment analysis, revealing functional pathways relevant to shared drug efficacy for AD. Subsequently, using the top 1000 enrichment results, our system identified 1246 additional drug candidates for AD treatment. The top 10 candidates were validated using evidence from medical literature. EDGAR is deployed within ROBOKOP, complete with a web user interface. This is the first study to apply enrichment analysis to large graph completion and drug repurposing.