Abstract:Diffusion Probabilistic Models (DPMs) have been recently utilized to deal with various blind image restoration (IR) tasks, where they have demonstrated outstanding performance in terms of perceptual quality. However, the task-specific nature of existing solutions and the excessive computational costs related to their training, make such models impractical and challenging to use for different IR tasks than those that were initially trained for. This hinders their wider adoption, especially by those who lack access to powerful computational resources and vast amount of training data. In this work we aim to address the above issues and enable the successful adoption of DPMs in practical IR-related applications. Towards this goal, we propose a modular diffusion probabilistic IR framework (DP-IR), which allows us to combine the performance benefits of existing pre-trained state-of-the-art IR networks and generative DPMs, while it requires only the additional training of a relatively small module (0.7M params) related to the particular IR task of interest. Moreover, the architecture of the proposed framework allows for a sampling strategy that leads to at least four times reduction of neural function evaluations without suffering any performance loss, while it can also be combined with existing acceleration techniques such as DDIM. We evaluate our model on four benchmarks for the tasks of burst JDD-SR, dynamic scene deblurring, and super-resolution. Our method outperforms existing approaches in terms of perceptual quality while it retains a competitive performance with respect to fidelity metrics.
Abstract:We present a novel two-view geometry estimation framework which is based on a differentiable robust loss function fitting. We propose to treat the robust fundamental matrix estimation as an implicit layer, which allows us to avoid backpropagation through time and significantly improves the numerical stability. To take full advantage of the information from the feature matching stage we incorporate learnable weights that depend on the matching confidences. In this way our solution brings together feature extraction, matching and two-view geometry estimation in a unified end-to-end trainable pipeline. We evaluate our approach on the camera pose estimation task in both outdoor and indoor scenarios. The experiments on several datasets show that the proposed method outperforms both classic and learning-based state-of-the-art methods by a large margin. The project webpage is available at: https://github.com/VladPyatov/ihls