Abstract:Chord progressions encapsulate important information about music, pertaining to its structure and conveyed emotions. They serve as the backbone of musical composition, and in many cases, they are the sole information required for a musician to play along and follow the music. Despite their importance, chord progressions as a data domain remain underexplored. There is a lack of large-scale datasets suitable for deep learning applications, and limited research exploring chord progressions as an input modality. In this work, we present Chordonomicon, a dataset of over 666,000 songs and their chord progressions, annotated with structural parts, genre, and release date - created by scraping various sources of user-generated progressions and associated metadata. We demonstrate the practical utility of the Chordonomicon dataset for classification and generation tasks, and discuss its potential to provide valuable insights to the research community. Chord progressions are unique in their ability to be represented in multiple formats (e.g. text, graph) and the wealth of information chords convey in given contexts, such as their harmonic function . These characteristics make the Chordonomicon an ideal testbed for exploring advanced machine learning techniques, including transformers, graph machine learning, and hybrid systems that combine knowledge representation and machine learning.
Abstract:In the age of music streaming platforms, the task of automatically tagging music audio has garnered significant attention, driving researchers to devise methods aimed at enhancing performance metrics on standard datasets. Most recent approaches rely on deep neural networks, which, despite their impressive performance, possess opacity, making it challenging to elucidate their output for a given input. While the issue of interpretability has been emphasized in other fields like medicine, it has not received attention in music-related tasks. In this study, we explored the relevance of interpretability in the context of automatic music tagging. We constructed a workflow that incorporates three different information extraction techniques: a) leveraging symbolic knowledge, b) utilizing auxiliary deep neural networks, and c) employing signal processing to extract perceptual features from audio files. These features were subsequently used to train an interpretable machine-learning model for tag prediction. We conducted experiments on two datasets, namely the MTG-Jamendo dataset and the GTZAN dataset. Our method surpassed the performance of baseline models in both tasks and, in certain instances, demonstrated competitiveness with the current state-of-the-art. We conclude that there are use cases where the deterioration in performance is outweighed by the value of interpretability.
Abstract:This paper describes the methodology followed and the lessons learned from employing crowdsourcing techniques as part of a homework assignment involving higher education students of computer science. Making use of a platform that supports crowdsourcing in the cultural heritage domain students were solicited to enrich the metadata associated with a selection of music tracks. The results of the campaign were further analyzed and exploited by students through the use of semantic web technologies. In total, 98 students participated in the campaign, contributing more than 6400 annotations concerning 854 tracks. The process also led to the creation of an openly available annotated dataset, which can be useful for machine learning models for music tagging. The campaign's results and the comments gathered through an online survey enable us to draw some useful insights about the benefits and challenges of integrating crowdsourcing into computer science curricula and how this can enhance students' engagement in the learning process.
Abstract:In this study, we approached the Hit Song Prediction problem, which aims to predict which songs will become Billboard hits. We gathered a dataset of nearly 18500 hit and non-hit songs and extracted their audio features using the Spotify Web API. We test four machine-learning models on our dataset. We were able to predict the Billboard success of a song with approximately 86\% accuracy. The most succesful algorithms were Random Forest and Support Vector Machine.