Abstract:This paper makes three key contributions. First, via a substantial corpus of 51,278 interview questions sourced from 888 YouTube videos of mock interviews of Indian civil service candidates, we demonstrate stark gender bias in the broad nature of questions asked to male and female candidates. Second, our experiments with large language models show a strong presence of gender bias in explanations provided by the LLMs on the gender inference task. Finally, we present a novel dataset of 51,278 interview questions that can inform future social science studies.
Abstract:Current research concentrates on studying discussions on social media related to structural failures to improve disaster response strategies. However, detecting social web posts discussing concerns about anticipatory failures is under-explored. If such concerns are channeled to the appropriate authorities, it can aid in the prevention and mitigation of potential infrastructural failures. In this paper, we develop an infrastructure ombudsman -- that automatically detects specific infrastructure concerns. Our work considers several recent structural failures in the US. We present a first-of-its-kind dataset of 2,662 social web instances for this novel task mined from Reddit and YouTube.