Abstract:Large Language Models (LLMs) can aid synthesis planning in chemistry, but standard prompting methods often yield hallucinated or outdated suggestions. We study LLM interactions with a reaction knowledge graph by casting reaction path retrieval as a Text2Cypher (natural language to graph query) generation problem, and define single- and multi-step retrieval tasks. We compare zero-shot prompting to one-shot variants using static, random, and embedding-based exemplar selection, and assess a checklist-driven validator/corrector loop. To evaluate our framework, we consider query validity and retrieval accuracy. We find that one-shot prompting with aligned exemplars consistently performs best. Our checklist-style self-correction loop mainly improves executability in zero-shot settings and offers limited additional retrieval gains once a good exemplar is present. We provide a reproducible Text2Cypher evaluation setup to facilitate further work on KG-grounded LLMs for synthesis planning. Code is available at https://github.com/Intelligent-molecular-systems/KG-LLM-Synthesis-Retrieval.
Abstract:In chemical engineering, process data is often expensive to acquire, and complex phenomena are difficult to model rigorously, rendering both entirely data-driven and purely mechanistic modeling approaches impractical. We explore using physics-informed neural networks (PINNs) for modeling dynamic processes governed by differential-algebraic equation systems when process data is scarce and complete mechanistic knowledge is missing. In particular, we focus on estimating states for which neither direct observational data nor constitutive equations are available. For demonstration purposes, we study a continuously stirred tank reactor and a liquid-liquid separator. We find that PINNs can infer unmeasured states with reasonable accuracy, and they generalize better in low-data scenarios than purely data-driven models. We thus show that PINNs, similar to hybrid mechanistic/data-driven models, are capable of modeling processes when relatively few experimental data and only partially known mechanistic descriptions are available, and conclude that they constitute a promising avenue that warrants further investigation.