Abstract:As pretrained text-to-image diffusion models have become a useful tool for image synthesis, people want to specify the results in various ways. In this paper, we introduce a method to produce results with the same structure of a target image but painted with colors from a reference image, i.e., appearance transfer, especially following the semantic correspondence between the result and the reference. E.g., the result wing takes color from the reference wing, not the reference head. Existing methods rely on the query-key similarity within self-attention layer, usually producing defective results. To this end, we propose to find semantic correspondences and explicitly rearrange the features according to the semantic correspondences. Extensive experiments show the superiority of our method in various aspects: preserving the structure of the target and reflecting the color from the reference according to the semantic correspondences, even when the two images are not aligned.
Abstract:Semantic image synthesis (SIS) aims to generate realistic images that match given semantic masks. Despite recent advances allowing high-quality results and precise spatial control, they require a massive semantic segmentation dataset for training the models. Instead, we propose to employ a pre-trained unconditional generator and rearrange its feature maps according to proxy masks. The proxy masks are prepared from the feature maps of random samples in the generator by simple clustering. The feature rearranger learns to rearrange original feature maps to match the shape of the proxy masks that are either from the original sample itself or from random samples. Then we introduce a semantic mapper that produces the proxy masks from various input conditions including semantic masks. Our method is versatile across various applications such as free-form spatial editing of real images, sketch-to-photo, and even scribble-to-photo. Experiments validate advantages of our method on a range of datasets: human faces, animal faces, and buildings.