Abstract:Real-time safety assessment (RTSA) of dynamic systems is a critical task that has significant implications for various fields such as industrial and transportation applications, especially in non-stationary environments. However, the absence of a comprehensive review of real-time safety assessment methods in non-stationary environments impedes the progress and refinement of related methods. In this paper, a review of methods and techniques for RTSA tasks in non-stationary environments is provided. Specifically, the background and significance of RTSA approaches in non-stationary environments are firstly highlighted. We then present a problem description that covers the definition, classification, and main challenges. We review recent developments in related technologies such as online active learning, online semi-supervised learning, online transfer learning, and online anomaly detection. Finally, we discuss future outlooks and potential directions for further research. Our review aims to provide a comprehensive and up-to-date overview of real-time safety assessment methods in non-stationary environments, which can serve as a valuable resource for researchers and practitioners in this field.
Abstract:Concept drift detection has attracted considerable attention due to its importance in many real-world applications such as health monitoring and fault diagnosis. Conventionally, most advanced approaches will be of poor performance when the evaluation criteria of the environment has changed (i.e. concept drift), either can only detect and adapt to virtual drift. In this paper, we propose a new approach to detect real-drift in the chunk data stream with limited annotations based on concept confusion. When a new data chunk arrives, we use both real labels and pseudo labels to update the model after prediction and drift detection. In this context, the model will be confused and yields prediction difference once drift occurs. We then adopt cosine similarity to measure the difference. And an adaptive threshold method is proposed to find the abnormal value. Experiments show that our method has a low false alarm rate and false negative rate with the utilization of different classifiers.