Abstract:Ensemble learning plays a crucial role in practical applications of online learning due to its enhanced classification performance and adaptable adjustment mechanisms. However, most weight allocation strategies in ensemble learning are heuristic, making it challenging to theoretically guarantee that the ensemble classifier outperforms its base classifiers. To address this issue, a performance-bounded online ensemble learning method based on multi-armed bandits, named PB-OEL, is proposed in this paper. Specifically, multi-armed bandit with expert advice is incorporated into online ensemble learning, aiming to update the weights of base classifiers and make predictions. A theoretical framework is established to bound the performance of the ensemble classifier relative to base classifiers. By setting expert advice of bandits, the bound exceeds the performance of any base classifier when the length of data stream is sufficiently large. Additionally, performance bounds for scenarios with limited annotations are also derived. Numerous experiments on benchmark datasets and a dataset of real-time safety assessment tasks are conducted. The experimental results validate the theoretical bound to a certain extent and demonstrate that the proposed method outperforms existing state-of-the-art methods.
Abstract:Control barrier functions (CBFs) play a crucial role in achieving the safety-critical control of robotic systems theoretically. However, most existing methods rely on the analytical expressions of unsafe state regions, which is often impractical for irregular and dynamic unsafe regions. In this paper, a novel CBF construction approach, called CoIn-SafeLink, is proposed based on cost-sensitive incremental random vector functional-link (RVFL) neural networks. By designing an appropriate cost function, CoIn-SafeLink achieves differentiated sensitivities to safe and unsafe samples, effectively achieving zero false-negative risk in unsafe sample classification. Additionally, an incremental update theorem for CoIn-SafeLink is proposed, enabling precise adjustments in response to changes in the unsafe region. Finally, the gradient analytical expression of the CoIn-SafeLink is provided to calculate the control input. The proposed method is validated on a 3-degree-of-freedom drone attitude control system. Experimental results demonstrate that the method can effectively learn the unsafe region boundaries and rapidly adapt as these regions evolve, with an update speed approximately five times faster than comparison methods. The source code is available at https://github.com/songqiaohu/CoIn-SafeLink.
Abstract:Real-time safety assessment (RTSA) of dynamic systems is a critical task that has significant implications for various fields such as industrial and transportation applications, especially in non-stationary environments. However, the absence of a comprehensive review of real-time safety assessment methods in non-stationary environments impedes the progress and refinement of related methods. In this paper, a review of methods and techniques for RTSA tasks in non-stationary environments is provided. Specifically, the background and significance of RTSA approaches in non-stationary environments are firstly highlighted. We then present a problem description that covers the definition, classification, and main challenges. We review recent developments in related technologies such as online active learning, online semi-supervised learning, online transfer learning, and online anomaly detection. Finally, we discuss future outlooks and potential directions for further research. Our review aims to provide a comprehensive and up-to-date overview of real-time safety assessment methods in non-stationary environments, which can serve as a valuable resource for researchers and practitioners in this field.
Abstract:Concept drift detection has attracted considerable attention due to its importance in many real-world applications such as health monitoring and fault diagnosis. Conventionally, most advanced approaches will be of poor performance when the evaluation criteria of the environment has changed (i.e. concept drift), either can only detect and adapt to virtual drift. In this paper, we propose a new approach to detect real-drift in the chunk data stream with limited annotations based on concept confusion. When a new data chunk arrives, we use both real labels and pseudo labels to update the model after prediction and drift detection. In this context, the model will be confused and yields prediction difference once drift occurs. We then adopt cosine similarity to measure the difference. And an adaptive threshold method is proposed to find the abnormal value. Experiments show that our method has a low false alarm rate and false negative rate with the utilization of different classifiers.