Abstract:Vision-language models (VLMs), such as CLIP, have demonstrated exceptional generalization capabilities and can quickly adapt to downstream tasks through prompt fine-tuning. Unfortunately, in classification tasks involving non-training classes, known as open-vocabulary setting, fine-tuned VLMs often overfit to train classes, resulting in a misalignment between confidence scores and actual accuracy on unseen classes, which significantly undermines their reliability in real-world deployments. Existing confidence calibration methods typically require training parameters or analyzing features from the training dataset, restricting their ability to generalize unseen classes without corresponding train data. Moreover, VLM-specific calibration methods rely solely on text features from train classes as calibration indicators, which inherently limits their ability to calibrate train classes. To address these challenges, we propose an effective multimodal calibration method Contrast-Aware Calibration (CAC). Building on the original CLIP's zero-shot adaptability and the conclusion from empirical analysis that poor intra-class and inter-class discriminative ability on unseen classes is the root cause, we calculate calibration weights based on the contrastive difference between the original and fine-tuned CLIP. This method not only adapts to calibrating unseen classes but also overcomes the limitations of previous VLM calibration methods that could not calibrate train classes. In experiments involving 11 datasets with 5 fine-tuning methods, CAC consistently achieved the best calibration effect on both train and unseen classes without sacrificing accuracy and inference speed.
Abstract:Vision-language models (VLMs) have exhibited remarkable generalization capabilities, and prompt learning for VLMs has attracted great attention for the ability to adapt pre-trained VLMs to specific downstream tasks. However, existing studies mainly focus on single-modal prompts or uni-directional modality interaction, overlooking the powerful alignment effects resulting from the interaction between the vision and language modalities. To this end, we propose a novel prompt learning method called $\underline{\textbf{B}}i-directional \underline{\textbf{M}}odality \underline{\textbf{I}}nteraction \underline{\textbf{P}}rompt (BMIP)$, which dynamically weights bi-modal information through learning the information of the attention layer, enhancing trainability and inter-modal consistency compared to simple information aggregation methods. To evaluate the effectiveness of prompt learning methods, we propose a more realistic evaluation paradigm called open-world generalization complementing the widely adopted cross-dataset transfer and domain generalization tasks. Comprehensive experiments on various datasets reveal that BMIP not only outperforms current state-of-the-art methods across all three evaluation paradigms but is also flexible enough to be combined with other prompt-based methods for consistent performance enhancement.