Abstract:In the recent years, the copy detection patterns (CDP) attracted a lot of attention as a link between the physical and digital worlds, which is of great interest for the internet of things and brand protection applications. However, the security of CDP in terms of their reproducibility by unauthorized parties or clonability remains largely unexplored. In this respect this paper addresses a problem of anti-counterfeiting of physical objects and aims at investigating the authentication aspects and the resistances to illegal copying of the modern CDP from machine learning perspectives. A special attention is paid to a reliable authentication under the real life verification conditions when the codes are printed on an industrial printer and enrolled via modern mobile phones under regular light conditions. The theoretical and empirical investigation of authentication aspects of CDP is performed with respect to four types of copy fakes from the point of view of (i) multi-class supervised classification as a baseline approach and (ii) one-class classification as a real-life application case. The obtained results show that the modern machine-learning approaches and the technical capacities of modern mobile phones allow to reliably authenticate CDP on end-user mobile phones under the considered classes of fakes.
Abstract:Nowadays, the modern economy critically requires reliable yet cheap protection solutions against product counterfeiting for the mass market. Copy detection patterns (CDP) are considered as such solution in several applications. It is assumed that being printed at the maximum achievable limit of a printing resolution of an industrial printer with the smallest symbol size 1x1 elements, the CDP cannot be copied with sufficient accuracy and thus are unclonable. In this paper, we challenge this hypothesis and consider a copy attack against the CDP based on machine learning. The experimental based on samples produced on two industrial printers demonstrate that simple detection metrics used in the CDP authentication cannot reliably distinguish the original CDP from their fakes. Thus, the paper calls for a need of careful reconsideration of CDP cloneability and search for new authentication techniques and CDP optimization because of the current attack.
Abstract:In recent years, printable graphical codes have attracted a lot of attention enabling a link between the physical and digital worlds, which is of great interest for the IoT and brand protection applications. The security of printable codes in terms of their reproducibility by unauthorized parties or clonability is largely unexplored. In this paper, we try to investigate the clonability of printable graphical codes from a machine learning perspective. The proposed framework is based on a simple system composed of fully connected neural network layers. The results obtained on real codes printed by several printers demonstrate a possibility to accurately estimate digital codes from their printed counterparts in certain cases. This provides a new insight on scenarios, where printable graphical codes can be accurately cloned.