Abstract:Accurate prediction of flight-level passenger traffic is of paramount importance in airline operations, influencing key decisions from pricing to route optimization. This study introduces a novel, multimodal deep learning approach to the challenge of predicting flight-level passenger traffic, yielding substantial accuracy improvements compared to traditional models. Leveraging an extensive dataset from American Airlines, our model ingests historical traffic data, fare closure information, and seasonality attributes specific to each flight. Our proposed neural network integrates the strengths of Recurrent Neural Networks (RNN) and Convolutional Neural Networks (CNN), exploiting the temporal patterns and spatial relationships within the data to enhance prediction performance. Crucial to the success of our model is a comprehensive data processing strategy. We construct 3D tensors to represent data, apply careful masking strategies to mirror real-world dynamics, and employ data augmentation techniques to enrich the diversity of our training set. The efficacy of our approach is borne out in the results: our model demonstrates an approximate 33\% improvement in Mean Squared Error (MSE) compared to traditional benchmarks. This study, therefore, highlights the significant potential of deep learning techniques and meticulous data processing in advancing the field of flight traffic prediction.
Abstract:In this paper, a new perspective is suggested for unsupervised Ontology Matching (OM) or Ontology Alignment (OA) by treating it as a translation task. Ontologies are represented as graphs, and the translation is performed from a node in the source ontology graph to a path in the target ontology graph. The proposed framework, Truveta Mapper (TM), leverages a multi-task sequence-to-sequence transformer model to perform alignment across multiple ontologies in a zero-shot, unified and end-to-end manner. Multi-tasking enables the model to implicitly learn the relationship between different ontologies via transfer-learning without requiring any explicit cross-ontology manually labeled data. This also enables the formulated framework to outperform existing solutions for both runtime latency and alignment quality. The model is pre-trained and fine-tuned only on publicly available text corpus and inner-ontologies data. The proposed solution outperforms state-of-the-art approaches, Edit-Similarity, LogMap, AML, BERTMap, and the recently presented new OM frameworks in Ontology Alignment Evaluation Initiative (OAEI22), offers log-linear complexity in contrast to quadratic in the existing end-to-end methods, and overall makes the OM task efficient and more straightforward without much post-processing involving mapping extension or mapping repair.