Abstract:White Matter Tract Segmentation is imperative for studying brain structural connectivity, neurological disorders and neurosurgery. This task remains complex, as tracts differ among themselves, across subjects and conditions, yet have similar 3D structure across hemispheres and subjects. To address these challenges, we propose TrackletGPT, a language-like GPT framework which reintroduces sequential information in tokens using tracklets. TrackletGPT generalises seamlessly across datasets, is fully automatic, and encodes granular sub-streamline segments, Tracklets, scaling and refining GPT models in Tractography Segmentation. Based on our experiments, TrackletGPT outperforms state-of-the-art methods on average DICE, Overlap and Overreach scores on TractoInferno and HCP datasets, even on inter-dataset experiments.




Abstract:White matter bundle segmentation is crucial for studying brain structural connectivity, neurosurgical planning, and neurological disorders. White Matter Segmentation remains challenging due to structural similarity in streamlines, subject variability, symmetry in 2 hemispheres, etc. To address these challenges, we propose TractoGPT, a GPT-based architecture trained on streamline, cluster, and fusion data representations separately. TractoGPT is a fully-automatic method that generalizes across datasets and retains shape information of the white matter bundles. Experiments also show that TractoGPT outperforms state-of-the-art methods on average DICE, Overlap and Overreach scores. We use TractoInferno and 105HCP datasets and validate generalization across dataset.