Abstract:In the past years, predictive process monitoring (PPM) techniques based on artificial neural networks have evolved as a method to monitor the future behavior of business processes. Existing approaches mostly focus on interpreting the processes as sequences, so-called traces, and feeding them to neural architectures designed to operate on sequential data such as recurrent neural networks (RNNs) or transformers. In this study, we investigate an alternative way to perform PPM: by transforming each process in its directly-follows-graph (DFG) representation we are able to apply graph neural networks (GNNs) for the prediction tasks. By this, we aim to develop models that are more suitable for complex processes that are long and contain an abundance of loops. In particular, we present different ways to create DFG representations depending on the particular GNN we use. The tested GNNs range from classical node-based to novel edge-based architectures. Further, we investigate the possibility of using multi-graphs. By these steps, we aim to design graph representations that minimize the information loss when transforming traces into graphs.
Abstract:We introduce a novel contextual embedding model med-gte-hybrid that was derived from the gte-large sentence transformer to extract information from unstructured clinical narratives. Our model tuning strategy for med-gte-hybrid combines contrastive learning and a denoising autoencoder. To evaluate the performance of med-gte-hybrid, we investigate several clinical prediction tasks in large patient cohorts extracted from the MIMIC-IV dataset, including Chronic Kidney Disease (CKD) patient prognosis, estimated glomerular filtration rate (eGFR) prediction, and patient mortality prediction. Furthermore, we demonstrate that the med-gte-hybrid model improves patient stratification, clustering, and text retrieval, thus outperforms current state-of-the-art models on the Massive Text Embedding Benchmark (MTEB). While some of our evaluations focus on CKD, our hybrid tuning of sentence transformers could be transferred to other medical domains and has the potential to improve clinical decision-making and personalised treatment pathways in various healthcare applications.