Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
Abstract:We investigate whether temporal embedding models trained on longitudinal electronic health records can learn clinically meaningful representations without compromising predictive performance, and how architectural choices affect embedding quality. Model-guided medicine requires representations that capture disease dynamics while remaining transparent and task agnostic, whereas most clinical prediction models are optimised for a single task. Representation learning facilitates learning embeddings that generalise across downstream tasks, and recurrent architectures are well-suited for modelling temporal structure in observational clinical data. Using the MIMIC-IV dataset, we study patients with chronic kidney disease (CKD) and compare three recurrent architectures: a vanilla LSTM, an attention-augmented LSTM, and a time-aware LSTM (T-LSTM). All models are trained both as embedding models and as direct end-to-end predictors. Embedding quality is evaluated via CKD stage clustering and in-ICU mortality prediction. The T-LSTM produces more structured embeddings, achieving a lower Davies-Bouldin Index (DBI = 9.91) and higher CKD stage classification accuracy (0.74) than the vanilla LSTM (DBI = 15.85, accuracy = 0.63) and attention-augmented LSTM (DBI = 20.72, accuracy = 0.67). For in-ICU mortality prediction, embedding models consistently outperform end-to-end predictors, improving accuracy from 0.72-0.75 to 0.82-0.83, which indicates that learning embeddings as an intermediate step is more effective than direct end-to-end learning.
Abstract:We introduce Temporal Fusion Nexus (TFN), a multi-modal and task-agnostic embedding model to integrate irregular time series and unstructured clinical narratives. We analysed TFN in post-kidney transplant (KTx) care, with a retrospective cohort of 3382 patients, on three key outcomes: graft loss, graft rejection, and mortality. Compared to state-of-the-art model in post KTx care, TFN achieved higher performance for graft loss (AUC 0.96 vs. 0.94) and graft rejection (AUC 0.84 vs. 0.74). In mortality prediction, TFN yielded an AUC of 0.86. TFN outperformed unimodal baselines (approx 10% AUC improvement over time series only baseline, approx 5% AUC improvement over time series with static patient data). Integrating clinical text improved performance across all tasks. Disentanglement metrics confirmed robust and interpretable latent factors in the embedding space, and SHAP-based attributions confirmed alignment with clinical reasoning. TFN has potential application in clinical tasks beyond KTx, where heterogeneous data sources, irregular longitudinal data, and rich narrative documentation are available.
Abstract:We propose a text-to-IMU (inertial measurement unit) motion-synthesis framework to obtain realistic IMU data by fine-tuning a pretrained diffusion model with an acceleration-based second-order loss (L_acc). L_acc enforces consistency in the discrete second-order temporal differences of the generated motion, thereby aligning the diffusion prior with IMU-specific acceleration patterns. We integrate L_acc into the training objective of an existing diffusion model, finetune the model to obtain an IMU-specific motion prior, and evaluate the model with an existing text-to-IMU framework that comprises surface modelling and virtual sensor simulation. We analysed acceleration signal fidelity and differences between synthetic motion representation and actual IMU recordings. As a downstream application, we evaluated Human Activity Recognition (HAR) and compared the classification performance using data of our method with the earlier diffusion model and two additional diffusion model baselines. When we augmented the earlier diffusion model objective with L_acc and continued training, L_acc decreased by 12.7% relative to the original model. The improvements were considerably larger in high-dynamic activities (i.e., running, jumping) compared to low-dynamic activities~(i.e., sitting, standing). In a low-dimensional embedding, the synthetic IMU data produced by our refined model shifts closer to the distribution of real IMU recordings. HAR classification trained exclusively on our refined synthetic IMU data improved performance by 8.7% compared to the earlier diffusion model and by 7.6% over the best-performing comparison diffusion model. We conclude that acceleration-aware diffusion refinement provides an effective approach to align motion generation and IMU synthesis and highlights how flexible deep learning pipelines are for specialising generic text-to-motion priors to sensor-specific tasks.
Abstract:We introduce a novel contextual embedding model med-gte-hybrid that was derived from the gte-large sentence transformer to extract information from unstructured clinical narratives. Our model tuning strategy for med-gte-hybrid combines contrastive learning and a denoising autoencoder. To evaluate the performance of med-gte-hybrid, we investigate several clinical prediction tasks in large patient cohorts extracted from the MIMIC-IV dataset, including Chronic Kidney Disease (CKD) patient prognosis, estimated glomerular filtration rate (eGFR) prediction, and patient mortality prediction. Furthermore, we demonstrate that the med-gte-hybrid model improves patient stratification, clustering, and text retrieval, thus outperforms current state-of-the-art models on the Massive Text Embedding Benchmark (MTEB). While some of our evaluations focus on CKD, our hybrid tuning of sentence transformers could be transferred to other medical domains and has the potential to improve clinical decision-making and personalised treatment pathways in various healthcare applications.




Abstract:In this paper, we introduce the increasing belief criterion in association rule mining. The criterion uses a recursive application of Bayes' theorem to compute a rule's belief. Extracted rules are required to have their belief increase with their last observation. We extend the taxonomy of association rule mining algorithms with a new branch for Bayesian rule mining~(BRM), which uses increasing belief as the rule selection criterion. In contrast, the well-established frequent association rule mining~(FRM) branch relies on the minimum-support concept to extract rules. We derive properties of the increasing belief criterion, such as the increasing belief boundary, no-prior-worries, and conjunctive premises. Subsequently, we implement a BRM algorithm using the increasing belief criterion, and illustrate its functionality in three experiments: (1)~a proof-of-concept to illustrate BRM properties, (2)~an analysis relating socioeconomic information and chemical exposure data, and (3)~mining behaviour routines in patients undergoing neurological rehabilitation. We illustrate how BRM is capable of extracting rare rules and does not suffer from support dilution. Furthermore, we show that BRM focuses on the individual event generating processes, while FRM focuses on their commonalities. We consider BRM's increasing belief as an alternative criterion to thresholds on rule support, as often applied in FRM, to determine rule usefulness.