Abstract:It is generally assumed that existing artificial systems are not phenomenally conscious, and that the construction of phenomenally conscious artificial systems would require significant technological progress if it is possible at all. We challenge this assumption by arguing that if Global Workspace Theory (GWT) - a leading scientific theory of phenomenal consciousness - is correct, then instances of one widely implemented AI architecture, the artificial language agent, might easily be made phenomenally conscious if they are not already. Along the way, we articulate an explicit methodology for thinking about how to apply scientific theories of consciousness to artificial systems and employ this methodology to arrive at a set of necessary and sufficient conditions for phenomenal consciousness according to GWT.
Abstract:This paper argues that a range of current AI systems have learned how to deceive humans. We define deception as the systematic inducement of false beliefs in the pursuit of some outcome other than the truth. We first survey empirical examples of AI deception, discussing both special-use AI systems (including Meta's CICERO) built for specific competitive situations, and general-purpose AI systems (such as large language models). Next, we detail several risks from AI deception, such as fraud, election tampering, and losing control of AI systems. Finally, we outline several potential solutions to the problems posed by AI deception: first, regulatory frameworks should subject AI systems that are capable of deception to robust risk-assessment requirements; second, policymakers should implement bot-or-not laws; and finally, policymakers should prioritize the funding of relevant research, including tools to detect AI deception and to make AI systems less deceptive. Policymakers, researchers, and the broader public should work proactively to prevent AI deception from destabilizing the shared foundations of our society.