Abstract:It is generally assumed that existing artificial systems are not phenomenally conscious, and that the construction of phenomenally conscious artificial systems would require significant technological progress if it is possible at all. We challenge this assumption by arguing that if Global Workspace Theory (GWT) - a leading scientific theory of phenomenal consciousness - is correct, then instances of one widely implemented AI architecture, the artificial language agent, might easily be made phenomenally conscious if they are not already. Along the way, we articulate an explicit methodology for thinking about how to apply scientific theories of consciousness to artificial systems and employ this methodology to arrive at a set of necessary and sufficient conditions for phenomenal consciousness according to GWT.
Abstract:Recent progress in artificial intelligence (AI) has drawn attention to the technology's transformative potential, including what some see as its prospects for causing large-scale harm. We review two influential arguments purporting to show how AI could pose catastrophic risks. The first argument -- the Problem of Power-Seeking -- claims that, under certain assumptions, advanced AI systems are likely to engage in dangerous power-seeking behavior in pursuit of their goals. We review reasons for thinking that AI systems might seek power, that they might obtain it, that this could lead to catastrophe, and that we might build and deploy such systems anyway. The second argument claims that the development of human-level AI will unlock rapid further progress, culminating in AI systems far more capable than any human -- this is the Singularity Hypothesis. Power-seeking behavior on the part of such systems might be particularly dangerous. We discuss a variety of objections to both arguments and conclude by assessing the state of the debate.