Abstract:In this report, we argue that there is a realistic possibility that some AI systems will be conscious and/or robustly agentic in the near future. That means that the prospect of AI welfare and moral patienthood, i.e. of AI systems with their own interests and moral significance, is no longer an issue only for sci-fi or the distant future. It is an issue for the near future, and AI companies and other actors have a responsibility to start taking it seriously. We also recommend three early steps that AI companies and other actors can take: They can (1) acknowledge that AI welfare is an important and difficult issue (and ensure that language model outputs do the same), (2) start assessing AI systems for evidence of consciousness and robust agency, and (3) prepare policies and procedures for treating AI systems with an appropriate level of moral concern. To be clear, our argument in this report is not that AI systems definitely are, or will be, conscious, robustly agentic, or otherwise morally significant. Instead, our argument is that there is substantial uncertainty about these possibilities, and so we need to improve our understanding of AI welfare and our ability to make wise decisions about this issue. Otherwise there is a significant risk that we will mishandle decisions about AI welfare, mistakenly harming AI systems that matter morally and/or mistakenly caring for AI systems that do not.
Abstract:What can contemporary machine learning (ML) models do? Given the proliferation of ML models in society, answering this question matters to a variety of stakeholders, both public and private. The evaluation of models' capabilities is rapidly emerging as a key subfield of modern ML, buoyed by regulatory attention and government grants. Despite this, the notion of an ML model possessing a capability has not been interrogated: what are we saying when we say that a model is able to do something? And what sorts of evidence bear upon this question? In this paper, we aim to answer these questions, using the capabilities of large language models (LLMs) as a running example. Drawing on the large philosophical literature on abilities, we develop an account of ML models' capabilities which can be usefully applied to the nascent science of model evaluation. Our core proposal is a conditional analysis of model abilities (CAMA): crudely, a machine learning model has a capability to X just when it would reliably succeed at doing X if it 'tried'. The main contribution of the paper is making this proposal precise in the context of ML, resulting in an operationalisation of CAMA applicable to LLMs. We then put CAMA to work, showing that it can help make sense of various features of ML model evaluation practice, as well as suggest procedures for performing fair inter-model comparisons.
Abstract:Despite its centrality in the philosophy of cognitive science, there has been little prior philosophical work engaging with the notion of representation in contemporary NLP practice. This paper attempts to fill that lacuna: drawing on ideas from cognitive science, I introduce a framework for evaluating the representational claims made about components of neural NLP models, proposing three criteria with which to evaluate whether a component of a model represents a property and operationalising these criteria using probing classifiers, a popular analysis technique in NLP (and deep learning more broadly). The project of operationalising a philosophically-informed notion of representation should be of interest to both philosophers of science and NLP practitioners. It affords philosophers a novel testing-ground for claims about the nature of representation, and helps NLPers organise the large literature on probing experiments, suggesting novel avenues for empirical research.