School of Computing at Queens University
Abstract:Robots sometimes have to work together with a mixture of partially-aligned or conflicting goals. Flocking - coordinated motion through cohesion, alignment, and separation - traditionally assumes uniform desired inter-agent distances. Many practical applications demand greater flexibility, as the diversity of types and configurations grows with the popularity of multi-agent systems in society. Moreover, agents often operate without guarantees of trust or secure communication. Motivated by these challenges we update well-established frameworks by relaxing this assumption of shared inter-agent distances and constraints. Through a new form of constrained collective potential function, we introduce a solution that permits negotiation of these parameters. In the spirit of the traditional flocking control canon, this negotiation is achieved purely through local observations and does not require any global information or inter-agent communication. The approach is robust to semi-trust scenarios, where neighbouring agents pursue conflicting goals. We validate the effectiveness of the approach through a series of simulations.
Abstract:We develop a learning-based framework for constructing shrinking disturbance-invariant tubes under state- and input-dependent uncertainty, intended as a building block for tube Model Predictive Control (MPC), and certify safety via a lifted, isotone (order-preserving) fixed-point map. Gaussian Process (GP) posteriors become $(1-α)$ credible ellipsoids, then polytopic outer sets for deterministic set operations. A two-time-scale scheme separates learning epochs, where these polytopes are frozen, from an inner, outside-in iteration that converges to a compact fixed point $Z^\star\!\subseteq\!\mathcal G$; its state projection is RPI for the plant. As data accumulate, disturbance polytopes tighten, and the associated tubes nest monotonically, resolving the circular dependence between the set to be verified and the disturbance model while preserving hard constraints. A double-integrator study illustrates shrinking tube cross-sections in data-rich regions while maintaining invariance.
Abstract:Wildfire monitoring requires high-resolution atmospheric measurements, yet low-cost sensors on Unmanned Aerial Vehicles (UAVs) exhibit baseline drift, cross-sensitivity, and response lag that corrupt concentration estimates. Traditional deep learning denoising approaches demand large datasets impractical to obtain from limited UAV flight campaigns. We present PC$^2$DAE, a physics-informed denoising autoencoder that addresses data scarcity by embedding physical constraints directly into the network architecture. Non-negative concentration estimates are enforced via softplus activations and physically plausible temporal smoothing, ensuring outputs are physically admissible by construction rather than relying on loss function penalties. The architecture employs hierarchical decoder heads for Black Carbon, Gas, and CO$_2$ sensor families, with two variants: PC$^2$DAE-Lean (21k parameters) for edge deployment and PC$^2$DAE-Wide (204k parameters) for offline processing. We evaluate on 7,894 synchronized 1 Hz samples collected from UAV flights during prescribed burns in Saskatchewan, Canada (approximately 2.2 hours of flight data), two orders of magnitude below typical deep learning requirements. PC$^2$DAE-Lean achieves 67.3\% smoothness improvement and 90.7\% high-frequency noise reduction with zero physics violations. Five baselines (LSTM-AE, U-Net, Transformer, CBDAE, DeSpaWN) produce 15--23\% negative outputs. The lean variant outperforms wide (+5.6\% smoothness), suggesting reduced capacity with strong inductive bias prevents overfitting in data-scarce regimes. Training completes in under 65 seconds on consumer hardware.
Abstract:This paper presents the integration and experimental validation of advanced control strategies for quadcopters based on Lie groups. We build upon recent theoretical developments on SE2(3)-based controllers and introduce a novel SE2(3) model predictive controller (MPC) that combines the predictive capabilities and constraint-handling of optimal control with the geometric properties of Lie group formulations. We evaluated this MPC against a state-of-the-art SE2(3)-based LQR approach and obtained comparable performance in simulation. Both controllers where also deployed on the Quanser QDrone platform and compared to each other and an industry standard control architecture. Results show that the SE_2(3) MPC achieves superior trajectory tracking performance and robustness across a range of scenarios. This work demonstrates the practical effectiveness of Lie group-based controllers and offers comparative insights into their impact on system behaviour and real-time performance
Abstract:This paper presents a novel decentralized approach for achieving emergent behavior in multi-agent systems with minimal information sharing. Based on prior work in simple orbits, our method produces a broad class of stable, periodic trajectories by stabilizing the system around a Lie group-based geometric embedding. Employing the Lie group SO(3), we generate a wider range of periodic curves than existing quaternion-based methods. Furthermore, we exploit SO(3) properties to eliminate the need for velocity inputs, allowing agents to receive only position inputs. We also propose a novel phase controller that ensures uniform agent separation, along with a formal stability proof. Validation through simulations and experiments showcases the method's adaptability to complex low-level dynamics and disturbances.
Abstract:Efficient scheduling remains a critical challenge in various domains, requiring solutions to complex NP-hard optimization problems to achieve optimal resource allocation and maximize productivity. In this paper, we introduce a framework called Transformer-Based Task Scheduling System (TRATSS), designed to address the intricacies of single agent scheduling in graph-based environments. By integrating the latest advancements in reinforcement learning and transformer architecture, TRATSS provides a novel system that outputs optimized task scheduling decisions while dynamically adapting to evolving task requirements and resource availability. Leveraging the self-attention mechanism in transformers, TRATSS effectively captures complex task dependencies, thereby providing solutions with enhanced resource utilization and task completion efficiency. Experimental evaluations on benchmark datasets demonstrate TRATSS's effectiveness in providing high-quality solutions to scheduling problems that involve multiple action profiles.
Abstract:This paper proposes the Real-Time Fast Marching Tree (RT-FMT), a real-time planning algorithm that features local and global path generation, multiple-query planning, and dynamic obstacle avoidance. During the search, RT-FMT quickly looks for the global solution and, in the meantime, generates local paths that can be used by the robot to start execution faster. In addition, our algorithm constantly rewires the tree to keep branches from forming inside the dynamic obstacles and to maintain the tree root near the robot, which allows the tree to be reused multiple times for different goals. Our algorithm is based on the planners Fast Marching Tree (FMT*) and Real-time Rapidly-Exploring Random Tree (RT-RRT*). We show via simulations that RT-FMT outperforms RT- RRT* in both execution cost and arrival time, in most cases. Moreover, we also demonstrate via simulation that it is worthwhile taking the local path before the global path is available in order to reduce arrival time, even though there is a small possibility of taking an inferior path.
Abstract:Modern on-road navigation systems heavily depend on integrating speed measurements with inertial navigation systems (INS) and global navigation satellite systems (GNSS). Telemetry-based applications typically source speed data from the On-Board Diagnostic II (OBD-II) system. However, the method of deriving speed, as well as the types of sensors used to measure wheel speed, differs across vehicles. These differences result in varying error characteristics that must be accounted for in navigation and autonomy applications. This paper addresses this gap by examining the diverse speed-sensing technologies employed in standard automotive systems and alternative techniques used in advanced systems designed for higher levels of autonomy, such as Advanced Driver Assistance Systems (ADAS), Autonomous Driving (AD), or surveying applications. We propose a method to identify the type of speed sensor in a vehicle and present strategies for accurately modeling its error characteristics. To validate our approach, we collected and analyzed data from three long real road trajectories conducted in urban environments in Toronto and Kingston, Ontario, Canada. The results underscore the critical role of integrating multiple sensor modalities to achieve more accurate speed estimation, thus improving automotive navigation state estimation, particularly in GNSS-denied environments.
Abstract:This work investigates the self-organization of multi-agent systems into closed trajectories, a common requirement in unmanned aerial vehicle (UAV) surveillance tasks. In such scenarios, smooth, unbiased control signals save energy and mitigate mechanical strain. We propose a decentralized control system architecture that produces a globally stable emergent structure from local observations only; there is no requirement for agents to share a global plan or follow prescribed trajectories. Central to our approach is the formulation of an injective virtual embedding induced by rotations from the actual agent positions. This embedding serves as a structure-preserving map around which all agent stabilize their relative positions and permits the use of well-established linear control techniques. We construct the embedding such that it is topologically equivalent to the desired trajectory (i.e., a homeomorphism), thereby preserving the stability characteristics. We demonstrate the versatility of this approach through implementation on a swarm of Quanser QDrone quadcopters. Results demonstrate the quadcopters self-organize into the desired trajectory while maintaining even separation.




Abstract:Adverse weather conditions pose a significant challenge to the widespread adoption of Autonomous Vehicles (AVs) by impacting sensors like LiDARs and cameras. Even though Collaborative Perception (CP) improves AV perception in difficult conditions, existing CP datasets lack adverse weather conditions. To address this, we introduce Adver-City, the first open-source synthetic CP dataset focused on adverse weather conditions. Simulated in CARLA with OpenCDA, it contains over 24 thousand frames, over 890 thousand annotations, and 110 unique scenarios across six different weather conditions: clear weather, soft rain, heavy rain, fog, foggy heavy rain and, for the first time in a synthetic CP dataset, glare. It has six object categories including pedestrians and cyclists, and uses data from vehicles and roadside units featuring LiDARs, RGB and semantic segmentation cameras, GNSS, and IMUs. Its scenarios, based on real crash reports, depict the most relevant road configurations for adverse weather and poor visibility conditions, varying in object density, with both dense and sparse scenes, allowing for novel testing conditions of CP models. Benchmarks run on the dataset show that weather conditions created challenging conditions for perception models, reducing multi-modal object detection performance by up to 19%, while object density affected LiDAR-based detection by up to 29%. The dataset, code and documentation are available at https://labs.cs.queensu.ca/quarrg/datasets/adver-city/.