Abstract:The replica-exchange Monte-Carlo (RXMC) method is a powerful Markov-chain Monte-Carlo algorithm for sampling from multi-modal distributions, which are challenging for conventional methods. The sampling efficiency of the RXMC method depends highly on the selection of the temperatures, and finding optimal temperatures remains a challenge. In this study, we propose a refined online temperature selection method by extending the gradient-based optimization framework proposed previously. Building upon the existing temperature update approach, we introduce a reparameterization technique to strictly enforce physical constraints, such as the monotonic ordering of inverse temperatures, which were not explicitly addressed in the original formulation. The proposed method defines the variance of acceptance rates between adjacent replicas as a loss function, estimates its gradient using differential information from the sampling process, and optimizes the temperatures via gradient descent. We demonstrate the effectiveness of our method through experiments on benchmark spin systems, including the two-dimensional ferromagnetic Ising model, the two-dimensional ferromagnetic XY model, and the three-dimensional Edwards-Anderson model. Our results show that the method successfully achieves uniform acceptance rates and reduces round-trip times across the temperature space. Furthermore, our proposed method offers a significant advantage over recently proposed policy gradient method that require careful hyperparameter tuning, while simultaneously preventing the constraint violations that destabilize optimization.




Abstract:Quantum annealing (QA) has attracted research interest as a sampler and combinatorial optimization problem (COP) solver. A recently proposed sampling-based solver for QA significantly reduces the required number of qubits, being capable of large COPs. In relation to this, a trainable sampling-based COP solver has been proposed that optimizes its internal parameters from a dataset by using a deep learning technique called deep unfolding. Although learning the internal parameters accelerates the convergence speed, the sampler in the trainable solver is restricted to using a classical sampler owing to the training cost. In this study, to utilize QA in the trainable solver, we propose classical-quantum transfer learning, where parameters are trained classically, and the trained parameters are used in the solver with QA. The results of numerical experiments demonstrate that the trainable quantum COP solver using classical-quantum transfer learning improves convergence speed and execution time over the original solver.



Abstract:We detect the quantum phase transition of a quantum many-body system by mapping the observed results of the quantum state onto a neural network. In the present study, we utilized the simplest case of a quantum many-body system, namely a one-dimensional chain of Ising spins with the transverse Ising model. We prepared several spin configurations, which were obtained using repeated observations of the model for a particular strength of the transverse field, as input data for the neural network. Although the proposed method can be employed using experimental observations of quantum many-body systems, we tested our technique with spin configurations generated by a quantum Monte Carlo simulation without initial relaxation. The neural network successfully classified the strength of transverse field only from the spin configurations, leading to consistent estimations of the critical point of our model $\Gamma_c =J$.