Abstract:Quantum annealing (QA) has attracted research interest as a sampler and combinatorial optimization problem (COP) solver. A recently proposed sampling-based solver for QA significantly reduces the required number of qubits, being capable of large COPs. In relation to this, a trainable sampling-based COP solver has been proposed that optimizes its internal parameters from a dataset by using a deep learning technique called deep unfolding. Although learning the internal parameters accelerates the convergence speed, the sampler in the trainable solver is restricted to using a classical sampler owing to the training cost. In this study, to utilize QA in the trainable solver, we propose classical-quantum transfer learning, where parameters are trained classically, and the trained parameters are used in the solver with QA. The results of numerical experiments demonstrate that the trainable quantum COP solver using classical-quantum transfer learning improves convergence speed and execution time over the original solver.
Abstract:We detect the quantum phase transition of a quantum many-body system by mapping the observed results of the quantum state onto a neural network. In the present study, we utilized the simplest case of a quantum many-body system, namely a one-dimensional chain of Ising spins with the transverse Ising model. We prepared several spin configurations, which were obtained using repeated observations of the model for a particular strength of the transverse field, as input data for the neural network. Although the proposed method can be employed using experimental observations of quantum many-body systems, we tested our technique with spin configurations generated by a quantum Monte Carlo simulation without initial relaxation. The neural network successfully classified the strength of transverse field only from the spin configurations, leading to consistent estimations of the critical point of our model $\Gamma_c =J$.