Abstract:In this paper, we realize automatic visual recognition and direction estimation of pointing. We introduce the first neural pointing understanding method based on two key contributions. The first is the introduction of a first-of-its-kind large-scale dataset for pointing recognition and direction estimation, which we refer to as the DP Dataset. DP Dataset consists of more than 2 million frames of over 33 people pointing in various styles annotated for each frame with pointing timings and 3D directions. The second is DeePoint, a novel deep network model for joint recognition and 3D direction estimation of pointing. DeePoint is a Transformer-based network which fully leverages the spatio-temporal coordination of the body parts, not just the hands. Through extensive experiments, we demonstrate the accuracy and efficiency of DeePoint. We believe DP Dataset and DeePoint will serve as a sound foundation for visual human intention understanding.
Abstract:We propose a method of data quantization of finite discrete-time signals which optimizes the error estimate of low frequency Haar coefficients. We also discuss the error/noise bounds of this quantization in the Fourier space. Our result shows one can quantize any discrete-time analog signal with high precision at low frequencies. Our method is deterministic, and it employs no statistical arguments, nor any probabilistic assumptions.