Abstract:Autonomous and targeted underwater visual monitoring and exploration using Autonomous Underwater Vehicles (AUVs) can be a challenging task due to both online and offline constraints. The online constraints comprise limited onboard storage capacity and communication bandwidth to the surface, whereas the offline constraints entail the time and effort required for the selection of desired key frames from the video data. An example use case of targeted underwater visual monitoring is finding the most interesting visual frames of fish in a long sequence of an AUV's visual experience. This challenge of targeted informative sampling is further aggravated in murky waters with poor visibility. In this paper, we present MERLION, a novel framework that provides semantically aligned and visually enhanced summaries for murky underwater marine environment monitoring and exploration. Specifically, our framework integrates (a) an image-text model for semantically aligning the visual samples to the users' needs, (b) an image enhancement model for murky water visual data and (c) an informative sampler for summarizing the monitoring experience. We validate our proposed MERLION framework on real-world data with user studies and present qualitative and quantitative results using our evaluation metric and show improved results compared to the state-of-the-art approaches. We have open-sourced the code for MERLION at the following link https://github.com/MARVL-Lab/MERLION.git.
Abstract:The underwater world remains largely unexplored, with Autonomous Underwater Vehicles (AUVs) playing a crucial role in sub-sea explorations. However, continuous monitoring of underwater environments using AUVs can generate a significant amount of data. In addition, sending live data feed from an underwater environment requires dedicated on-board data storage options for AUVs which can hinder requirements of other higher priority tasks. Informative sampling techniques offer a solution by condensing observations. In this paper, we present a semantically-aware online informative sampling (ON-IS) approach which samples an AUV's visual experience in real-time. Specifically, we obtain visual features from a fine-tuned object detection model to align the sampling outcomes with the desired semantic information. Our contributions are (a) a novel Semantic Online Informative Sampling (SON-IS) algorithm, (b) a user study to validate the proposed approach and (c) a novel evaluation metric to score our proposed algorithm with respect to the suggested samples by human subjects