Abstract:Quantum Machine Learning (QML) continues to evolve, unlocking new opportunities for diverse applications. In this study, we investigate and evaluate the applicability of QML models for binary classification of genome sequence data by employing various feature mapping techniques. We present an open-source, independent Qiskit-based implementation to conduct experiments on a benchmark genomic dataset. Our simulations reveal that the interplay between feature mapping techniques and QML algorithms significantly influences performance. Notably, the Pegasos Quantum Support Vector Classifier (Pegasos-QSVC) exhibits high sensitivity, particularly excelling in recall metrics, while Quantum Neural Networks (QNN) achieve the highest training accuracy across all feature maps. However, the pronounced variability in classifier performance, dependent on feature mapping, highlights the risk of overfitting to localized output distributions in certain scenarios. This work underscores the transformative potential of QML for genomic data classification while emphasizing the need for continued advancements to enhance the robustness and accuracy of these methodologies.
Abstract:Quantum Machine Learning (QML) offers significant potential for complex tasks like genome sequence classification, but quantum noise on Noisy Intermediate-Scale Quantum (NISQ) devices poses practical challenges. This study systematically evaluates how various quantum noise models including dephasing, amplitude damping, depolarizing, thermal noise, bit-flip, and phase-flip affect key QML algorithms (QSVC, Peg-QSVC, QNN, VQC) and feature mapping techniques (ZFeatureMap, ZZFeatureMap, and PauliFeatureMap). Results indicate that QSVC is notably robust under noise, whereas Peg-QSVC and QNN are more sensitive, particularly to depolarizing and amplitude-damping noise. The PauliFeatureMap is especially vulnerable, highlighting difficulties in maintaining accurate classification under noisy conditions. These findings underscore the critical importance of feature map selection and noise mitigation strategies in optimizing QML for genomic classification, with promising implications for personalized medicine.
Abstract:This paper introduces a robust zero-trust architecture (ZTA) tailored for the decentralized system that empowers efficient remote work and collaboration within IoT networks. Using blockchain-based federated learning principles, our proposed framework includes a robust aggregation mechanism designed to counteract malicious updates from compromised clients, enhancing the security of the global learning process. Moreover, secure and reliable trust computation is essential for remote work and collaboration. The robust ZTA framework integrates anomaly detection and trust computation, ensuring secure and reliable device collaboration in a decentralized fashion. We introduce an adaptive algorithm that dynamically adjusts to varying user contexts, using unsupervised clustering to detect novel anomalies, like zero-day attacks. To ensure a reliable and scalable trust computation, we develop an algorithm that dynamically adapts to varying user contexts by employing incremental anomaly detection and clustering techniques to identify and share local and global anomalies between nodes. Future directions include scalability improvements, Dirichlet process for advanced anomaly detection, privacy-preserving techniques, and the integration of post-quantum cryptographic methods to safeguard against emerging quantum threats.
Abstract:This research analyzes, models and develops a novel Digital Learning Environment (DLE) fortified by the innovative Private Learning Intelligence (PLI) framework. The proposed PLI framework leverages federated machine learning (FL) techniques to autonomously construct and continuously refine personalized learning models for individual learners, ensuring robust privacy protection. Our approach is pivotal in advancing DLE capabilities, empowering learners to actively participate in personalized real-time learning experiences. The integration of PLI within a DLE also streamlines instructional design and development demands for personalized teaching/learning. We seek ways to establish a foundation for the seamless integration of FL into learning systems, offering a transformative approach to personalized learning in digital environments. Our implementation details and code are made public.
Abstract:In this paper, we explore the power of Quantum Machine Learning as we extend, implement and evaluate algorithms like Quantum Support Vector Classifier (QSVC), Pegasos-QSVC, Variational Quantum Circuits (VQC), and Quantum Neural Networks (QNN) in Qiskit with diverse feature mapping techniques for genomic sequence classification.
Abstract:Quantum Federated Learning (QFL) is an emerging concept that aims to unfold federated learning (FL) over quantum networks, enabling collaborative quantum model training along with local data privacy. We explore the challenges of deploying QFL on cloud platforms, emphasizing quantum intricacies and platform limitations. The proposed data-encoding-driven QFL, with a proof of concept (GitHub Open Source) using genomic data sets on quantum simulators, shows promising results.
Abstract:The performance of Federated learning (FL) is negatively affected by device differences and statistical characteristics between participating clients. To address this issue, we introduce a deep unfolding network (DUN)-based technique that learns adaptive weights that unbiasedly ameliorate the adverse impacts of heterogeneity. The proposed method demonstrates impressive accuracy and quality-aware aggregation. Furthermore, it evaluated the best-weighted normalization approach to define less computational power on the aggregation method. The numerical experiments in this study demonstrate the effectiveness of this approach and provide insights into the interpretability of the unbiased weights learned. By incorporating unbiased weights into the model, the proposed approach effectively addresses quality-aware aggregation under the heterogeneity of the participating clients and the FL environment. Codes and details are \href{https://github.com/shanikairoshi/Improved_DUN_basedFL_Aggregation}{here}.
Abstract:Quantum Federated Learning (QFL) has gained significant attention due to quantum computing and machine learning advancements. As the demand for QFL continues to surge, there is a pressing need to comprehend its intricacies in distributed environments. This paper aims to provide a comprehensive overview of the current state of QFL, addressing a crucial knowledge gap in the existing literature. We develop ideas for new QFL frameworks, explore diverse use cases of applications, and consider the critical factors influencing their design. The technical contributions and limitations of various QFL research projects are examined while presenting future research directions and open questions for further exploration.
Abstract:With the emerging developments of the Metaverse, a virtual world where people can interact, socialize, play, and conduct their business, it has become critical to ensure that the underlying systems are transparent, secure, and trustworthy. To this end, we develop a decentralized and trustworthy quantum federated learning (QFL) framework. The proposed QFL leverages the power of blockchain to create a secure and transparent system that is robust against cyberattacks and fraud. In addition, the decentralized QFL system addresses the risks associated with a centralized server-based approach. With extensive experiments and analysis, we evaluate classical federated learning (CFL) and QFL in a distributed setting and demonstrate the practicality and benefits of the proposed design. Our theoretical analysis and discussions develop a genuinely decentralized financial system essential for the Metaverse. Furthermore, we present the application of blockchain-based QFL in a hybrid metaverse powered by a metaverse observer and world model. Our implementation details and code are publicly available 1.
Abstract:In this work, we propose and develop a simple experimental testbed to study the feasibility of a novel idea by coupling radio frequency (RF) sensing technology with Correlated Knowledge Distillation (CKD) theory towards designing lightweight, near real-time and precise human pose monitoring systems. The proposed CKD framework transfers and fuses pose knowledge from a robust "Teacher" model to a parameterized "Student" model, which can be a promising technique for obtaining accurate yet lightweight pose estimates. To assure its efficacy, we implemented CKD for distilling logits in our integrated Software Defined Radio (SDR)-based experimental setup and investigated the RF-visual signal correlation. Our CKD-RF sensing technique is characterized by two modes -- a camera-fed Teacher Class Network (e.g., images, videos) with an SDR-fed Student Class Network (e.g., RF signals). Specifically, our CKD model trains a dual multi-branch teacher and student network by distilling and fusing knowledge bases. The resulting CKD models are then subsequently used to identify the multimodal correlation and teach the student branch in reverse. Instead of simply aggregating their learnings, CKD training comprised multiple parallel transformations with the two domains, i.e., visual images and RF signals. Once trained, our CKD model can efficiently preserve privacy and utilize the multimodal correlated logits from the two different neural networks for estimating poses without using visual signals/video frames (by using only the RF signals).