Abstract:Principal component analysis (PCA) is a widely used technique for dimension reduction. As datasets continue to grow in size, distributed-PCA (DPCA) has become an active research area. A key challenge in DPCA lies in efficiently aggregating results across multiple machines or computing nodes due to computational overhead. Fan et al. (2019) introduced a pioneering DPCA method to estimate the leading rank-$r$ eigenspace, aggregating local rank-$r$ projection matrices by averaging. However, their method does not utilize eigenvalue information. In this article, we propose a novel DPCA method that incorporates eigenvalue information to aggregate local results via the matrix $\beta$-mean, which we call $\beta$-DPCA. The matrix $\beta$-mean offers a flexible and robust aggregation method through the adjustable choice of $\beta$ values. Notably, for $\beta=1$, it corresponds to the arithmetic mean; for $\beta=-1$, the harmonic mean; and as $\beta \to 0$, the geometric mean. Moreover, the matrix $\beta$-mean is shown to associate with the matrix $\beta$-divergence, a subclass of the Bregman matrix divergence, to support the robustness of $\beta$-DPCA. We also study the stability of eigenvector ordering under eigenvalue perturbation for $\beta$-DPCA. The performance of our proposal is evaluated through numerical studies.
Abstract:Active learning is a widely used methodology for various problems with high measurement costs. In active learning, the next object to be measured is selected by an acquisition function, and measurements are performed sequentially. The query by committee is a well-known acquisition function. In conventional methods, committee disagreement is quantified by the Kullback--Leibler divergence. In this paper, the measure of disagreement is defined by the Bregman divergence, which includes the Kullback--Leibler divergence as an instance, and the dual $\gamma$-power divergence. As a particular class of the Bregman divergence, the $\beta$-divergence is considered. By deriving the influence function, we show that the proposed method using $\beta$-divergence and dual $\gamma$-power divergence are more robust than the conventional method in which the measure of disagreement is defined by the Kullback--Leibler divergence. Experimental results show that the proposed method performs as well as or better than the conventional method.
Abstract:This paper aims at presenting a new application of information geometry to reinforcement learning focusing on dynamic treatment resumes. In a standard framework of reinforcement learning, a Q-function is defined as the conditional expectation of a reward given a state and an action for a single-stage situation. We introduce an equivalence relation, called the policy equivalence, in the space of all the Q-functions. A class of information divergence is defined in the Q-function space for every stage. The main objective is to propose an estimator of the optimal policy function by a method of minimum information divergence based on a dataset of trajectories. In particular, we discuss the $\gamma$-power divergence that is shown to have an advantageous property such that the $\gamma$-power divergence between policy-equivalent Q-functions vanishes. This property essentially works to seek the optimal policy, which is discussed in a framework of a semiparametric model for the Q-function. The specific choices of power index $\gamma$ give interesting relationships of the value function, and the geometric and harmonic means of the Q-function. A numerical experiment demonstrates the performance of the minimum $\gamma$-power divergence method in the context of dynamic treatment regimes.