Abstract:Keyword spotting (KWS) on mobile devices generally requires a small memory footprint. However, most current models still maintain a large number of parameters in order to ensure good performance. To solve this problem, this paper proposes a separable temporal convolution neural network with attention, it has a small number of parameters. Through the time convolution combined with attention mechanism, a small number of parameters model (32.2K) is implemented while maintaining high performance. The proposed model achieves 95.7% accuracy on the Google Speech Commands dataset, which is close to the performance of Res15(239K), the state-of-the-art model in KWS at present.
Abstract:Keyword spotting (KWS) on mobile devices generally requires a small memory footprint. However, most current models still maintain a large number of parameters in order to ensure good performance. In this paper, we propose a temporally pooled attention module which can capture global features better than the AveragePool. Besides, we design a separable temporal convolution network which leverages depthwise separable and temporal convolution to reduce the number of parameter and calculations. Finally, taking advantage of separable temporal convolution and temporally pooled attention, a efficient neural network (ST-AttNet) is designed for KWS system. We evaluate the models on the publicly available Google speech commands data sets V1. The number of parameters of proposed model (48K) is 1/6 of state-of-the-art TC-ResNet14-1.5 model (305K). The proposed model achieves a 96.6% accuracy, which is comparable to the TC-ResNet14-1.5 model (96.6%).