Abstract:Smart Grid (SG) research and development has drawn much attention from academia, industry and government due to the great impact it will have on society, economics and the environment. Securing the SG is a considerably significant challenge due the increased dependency on communication networks to assist in physical process control, exposing them to various cyber-threats. In addition to attacks that change measurement values using False Data Injection (FDI) techniques, attacks on the communication network may disrupt the power system's real-time operation by intercepting messages, or by flooding the communication channels with unnecessary data. Addressing these attacks requires a cross-layer approach. In this paper a cross-layered strategy is presented, called Cross-Layer Ensemble CorrDet with Adaptive Statistics(CECD-AS), which integrates the detection of faulty SG measurement data as well as inconsistent network inter-arrival times and transmission delays for more reliable and accurate anomaly detection and attack interpretation. Numerical results show that CECD-AS can detect multiple False Data Injections, Denial of Service (DoS) and Man In The Middle (MITM) attacks with a high F1-score compared to current approaches that only use SG measurement data for detection such as the traditional physics-based State Estimation, Ensemble CorrDet with Adaptive Statistics strategy and other machine learning classification-based detection schemes.
Abstract:Seed maturity in peanut (Arachis hypogaea L.) determines economic return to a producer because of its impact on seed weight (yield), and critically influences seed vigor and other quality characteristics. During seed development, the inner mesocarp layer of the pericarp (hull) transitions in color from white to black as the seed matures. The maturity assessment process involves the removal of the exocarp of the hull and visually categorizing the mesocarp color into varying color classes from immature (white, yellow, orange) to mature (brown, and black). This visual color classification is time consuming because the exocarp must be manually removed. In addition, the visual classification process involves human assessment of colors, which leads to large variability of color classification from observer to observer. A more objective, digital imaging approach to peanut maturity is needed, optimally without the requirement of removal of the hull's exocarp. This study examined the use of a hyperspectral imaging (HSI) process to determine pod maturity with intact pericarps. The HSI method leveraged spectral differences between mature and immature pods within a classification algorithm to identify the mature and immature pods. The results showed a high classification accuracy with consistency using samples from different years and cultivars. In addition, the proposed method was capable of estimating a continuous-valued, pixel-level maturity value for individual peanut pods, allowing for a valuable tool that can be utilized in seed quality research. This new method solves issues of labor intensity and subjective error that all current methods of peanut maturity determination have.
Abstract:A semi-supervised Partial Membership Latent Dirichlet Allocation approach is developed for hyperspectral unmixing and endmember estimation while accounting for spectral variability and spatial information. Partial Membership Latent Dirichlet Allocation is an effective approach for spectral unmixing while representing spectral variability and leveraging spatial information. In this work, we extend Partial Membership Latent Dirichlet Allocation to incorporate any available (imprecise) label information to help guide unmixing. Experimental results on two hyperspectral datasets show that the proposed semi-supervised PM-LDA can yield improved hyperspectral unmixing and endmember estimation results.
Abstract:The application of Partial Membership Latent Dirichlet Allocation(PM-LDA) for hyperspectral endmember estimation and spectral unmixing is presented. PM-LDA provides a model for a hyperspectral image analysis that accounts for spectral variability and incorporates spatial information through the use of superpixel-based 'documents.' In our application of PM-LDA, we employ the Normal Compositional Model in which endmembers are represented as Normal distributions to account for spectral variability and proportion vectors are modeled as random variables governed by a Dirichlet distribution. The use of the Dirichlet distribution enforces positivity and sum-to-one constraints on the proportion values. Algorithm results on real hyperspectral data indicate that PM-LDA produces endmember distributions that represent the ground truth classes and their associated variability.
Abstract:The Extended Functions of Multiple Instances (eFUMI) algorithm is a generalization of Multiple Instance Learning (MIL). In eFUMI, only bag level (i.e. set level) labels are needed to estimate target signatures from mixed data. The training bags in eFUMI are labeled positive if any data point in a bag contains or represents any proportion of the target signature and are labeled as a negative bag if all data points in the bag do not represent any target. From these imprecise labels, eFUMI has been shown to be effective at estimating target signatures in hyperspectral subpixel target detection problems. One motivating scenario for the use of eFUMI is where an analyst circles objects/regions of interest in a hyperspectral scene such that the target signatures of these objects can be estimated and be used to determine whether other instances of the object appear elsewhere in the image collection. The regions highlighted by the analyst serve as the imprecise labels for eFUMI. Often, an analyst may want to iteratively refine their imprecise labels. In this paper, we present an approach for estimating the influence on the estimated target signature if the label for a particular input data point is modified. This "instance influence estimation" guides an analyst to focus on (re-)labeling the data points that provide the largest change in the resulting estimated target signature and, thus, reduce the amount of time an analyst needs to spend refining the labels for a hyperspectral scene. Results are shown on real hyperspectral sub-pixel target detection data sets.