Abstract:Entity linking is an important step towards constructing knowledge graphs that facilitate advanced question answering over scientific documents, including the retrieval of relevant information included in tables within these documents. This paper introduces a general-purpose system for linking entities to items in the Wikidata knowledge base. It describes how we adapt this system for linking domain-specific entities, especially for those entities embedded within tables drawn from COVID-19-related scientific literature. We describe the setup of an efficient offline instance of the system that enables our entity-linking approach to be more feasible in practice. As part of a broader approach to infer the semantic meaning of scientific tables, we leverage the structural and semantic characteristics of the tables to improve overall entity linking performance.
Abstract:Rapid progress in natural language processing has led to its utilization in a variety of industrial and enterprise settings, including in its use for information extraction, specifically named entity recognition and relation extraction, from documents such as engineering manuals and field maintenance reports. While named entity recognition is a well-studied problem, existing state-of-the-art approaches require large labelled datasets which are hard to acquire for sensitive data such as maintenance records. Further, industrial domain experts tend to distrust results from black box machine learning models, especially when the extracted information is used in downstream predictive maintenance analytics. We overcome these challenges by developing three approaches built on the foundation of domain expert knowledge captured in dictionaries and ontologies. We develop a syntactic and semantic rules-based approach and an approach leveraging a pre-trained language model, fine-tuned for a question-answering task on top of our base dictionary lookup to extract entities of interest from maintenance records. We also develop a preliminary ontology to represent and capture the semantics of maintenance records. Our evaluations on a real-world aviation maintenance records dataset show promising results and help identify challenges specific to named entity recognition in the context of noisy industrial data.