Abstract:In Multi-Modal Knowledge Graphs (MMKGs), Multi-Modal Entity Alignment (MMEA) is crucial for identifying identical entities across diverse modal attributes. However, semantic inconsistency, mainly due to missing modal attributes, poses a significant challenge. Traditional approaches rely on attribute interpolation, but this often introduces modality noise, distorting the original semantics. Moreover, the lack of a universal theoretical framework limits advancements in achieving semantic consistency. This study introduces a novel approach, DESAlign, which addresses these issues by applying a theoretical framework based on Dirichlet energy to ensure semantic consistency. We discover that semantic inconsistency leads to model overfitting to modality noise, causing performance fluctuations, particularly when modalities are missing. DESAlign innovatively combats over-smoothing and interpolates absent semantics using existing modalities. Our approach includes a multi-modal knowledge graph learning strategy and a propagation technique that employs existing semantic features to compensate for missing ones, providing explicit Euler solutions. Comprehensive evaluations across 18 benchmarks, including monolingual and bilingual scenarios, demonstrate that DESAlign surpasses existing methods, setting a new standard in performance. Further testing on 42 benchmarks with high rates of missing modalities confirms its robustness, offering an effective solution to semantic inconsistency in real-world MMKGs.
Abstract:Entity alignment (EA), a pivotal process in integrating multi-source Knowledge Graphs (KGs), seeks to identify equivalent entity pairs across these graphs. Most existing approaches regard EA as a graph representation learning task, concentrating on enhancing graph encoders. However, the decoding process in EA - essential for effective operation and alignment accuracy - has received limited attention and remains tailored to specific datasets and model architectures, necessitating both entity and additional explicit relation embeddings. This specificity limits its applicability, particularly in GNN-based models. To address this gap, we introduce a novel, generalized, and efficient decoding approach for EA, relying solely on entity embeddings. Our method optimizes the decoding process by minimizing Dirichlet energy, leading to the gradient flow within the graph, to promote graph homophily. The discretization of the gradient flow produces a fast and scalable approach, termed Triple Feature Propagation (TFP). TFP innovatively channels gradient flow through three views: entity-to-entity, entity-to-relation, and relation-to-entity. This generalized gradient flow enables TFP to harness the multi-view structural information of KGs. Rigorous experimentation on diverse real-world datasets demonstrates that our approach significantly enhances various EA methods. Notably, the approach achieves these advancements with less than 6 seconds of additional computational time, establishing a new benchmark in efficiency and adaptability for future EA methods.