Abstract:This paper explores the performance of Google's Edge TPU on feed forward neural networks. We consider Edge TPU as a hardware platform and explore different architectures of deep neural network classifiers, which traditionally has been a challenge to run on resource constrained edge devices. Based on the use of a joint-time-frequency data representation, also known as spectrogram, we explore the trade-off between classification performance and the energy consumed for inference. The energy efficiency of Edge TPU is compared with that of widely-used embedded CPU ARM Cortex-A53. Our results quantify the impact of neural network architectural specifications on the Edge TPU's performance, guiding decisions on the TPU's optimal operating point, where it can provide high classification accuracy with minimal energy consumption. Also, our evaluations highlight the crossover in performance between the Edge TPU and Cortex-A53, depending on the neural network specifications. Based on our analysis, we provide a decision chart to guide decisions on platform selection based on the model parameters and context.
Abstract:This paper explores Google's Edge TPU for implementing a practical network intrusion detection system (NIDS) at the edge of IoT, based on a deep learning approach. While there are a significant number of related works that explore machine learning based NIDS for the IoT edge, they generally do not consider the issue of the required computational and energy resources. The focus of this paper is the exploration of deep learning-based NIDS at the edge of IoT, and in particular the computational and energy efficiency. In particular, the paper studies Google's Edge TPU as a hardware platform, and considers the following three key metrics: computation (inference) time, energy efficiency and the traffic classification performance. Various scaled model sizes of two major deep neural network architectures are used to investigate these three metrics. The performance of the Edge TPU-based implementation is compared with that of an energy efficient embedded CPU (ARM Cortex A53). Our experimental evaluation shows some unexpected results, such as the fact that the CPU significantly outperforms the Edge TPU for small model sizes.