Abstract:Vertical Federated Learning (VFL) is a category of Federated Learning in which models are trained collaboratively among parties with vertically partitioned data. Typically, in a VFL scenario, the labels of the samples are kept private from all the parties except for the aggregating server, that is the label owner. Nevertheless, recent works discovered that by exploiting gradient information returned by the server to bottom models, with the knowledge of only a small set of auxiliary labels on a very limited subset of training data points, an adversary can infer the private labels. These attacks are known as label inference attacks in VFL. In our work, we propose a novel framework called KDk, that combines Knowledge Distillation and k-anonymity to provide a defense mechanism against potential label inference attacks in a VFL scenario. Through an exhaustive experimental campaign we demonstrate that by applying our approach, the performance of the analyzed label inference attacks decreases consistently, even by more than 60%, maintaining the accuracy of the whole VFL almost unaltered.
Abstract:The novel Internet of Things (IoT) paradigm is composed of a growing number of heterogeneous smart objects and services that are transforming architectures and applications, increasing systems' complexity, and the need for reliability and autonomy. In this context, both smart objects and services are often provided by third parties which do not give full transparency regarding the security and privacy of the features offered. Although machine-based Service Level Agreements (SLA) have been recently leveraged to establish and share policies in Cloud-based scenarios, and also in the IoT context, the issue of making end users aware of the overall system security levels and the fulfillment of their privacy requirements through the provision of the requested service remains a challenging task. To tackle this problem, we propose a complete framework that defines suitable levels of privacy and security requirements in the acquisition of services in IoT, according to the user needs. Through the use of a Reinforcement Learning based solution, a user agent, inside the environment, is trained to choose the best smart objects granting access to the target services. Moreover, the solution is designed to guarantee deadline requirements and user security and privacy needs. Finally, to evaluate the correctness and the performance of the proposed approach we illustrate an extensive experimental analysis.
Abstract:Federated Learning (FL) has recently arisen as a revolutionary approach to collaborative training Machine Learning models. According to this novel framework, multiple participants train a global model collaboratively, coordinating with a central aggregator without sharing their local data. As FL gains popularity in diverse domains, security, and privacy concerns arise due to the distributed nature of this solution. Therefore, integrating this strategy with Blockchain technology has been consolidated as a preferred choice to ensure the privacy and security of participants. This paper explores the research efforts carried out by the scientific community to define privacy solutions in scenarios adopting Blockchain-Enabled FL. It comprehensively summarizes the background related to FL and Blockchain, evaluates existing architectures for their integration, and the primary attacks and possible countermeasures to guarantee privacy in this setting. Finally, it reviews the main application scenarios where Blockchain-Enabled FL approaches have been proficiently applied. This survey can help academia and industry practitioners understand which theories and techniques exist to improve the performance of FL through Blockchain to preserve privacy and which are the main challenges and future directions in this novel and still under-explored context. We believe this work provides a novel contribution respect to the previous surveys and is a valuable tool to explore the current landscape, understand perspectives, and pave the way for advancements or improvements in this amalgamation of Blockchain and Federated Learning.
Abstract:With the number of connected smart devices expected to constantly grow in the next years, Internet of Things (IoT) solutions are experimenting a booming demand to make data collection and processing easier. The ability of IoT appliances to provide pervasive and better support to everyday tasks, in most cases transparently to humans, is also achieved through the high degree of autonomy of such devices. However, the higher the number of new capabilities and services provided in an autonomous way, the wider the attack surface that exposes users to data hacking and lost. In this scenario, many critical challenges arise also because IoT devices have heterogeneous computational capabilities (i.e., in the same network there might be simple sensors/actuators as well as more complex and smart nodes). In this paper, we try to provide a contribution in this setting, tackling the non-trivial issues of equipping smart things with a strategy to evaluate, also through their neighbors, the trustworthiness of an object in the network before interacting with it. To do so, we design a novel and fully distributed trust model exploiting devices' behavioral fingerprints, a distributed consensus mechanism and the Blockchain technology. Beyond the detailed description of our framework, we also illustrate the security model associated with it and the tests carried out to evaluate its correctness and performance.