Abstract:Shortwave-infrared(SWIR) spectral information,ranging from 1 {\mu}m to 2.5{\mu}m, breaks the limitations of traditional color cameras in acquiring scene information and has been used in many fields. However, conventional SWIR hyperspectral imaging systems face challenges due to their bulky setups and low acquisition speed. In this work, we introduce a snapshot SWIR hyperspectral imaging system based on a metasurface filter and a corresponding filter selection method to achieve the lowest correlation coefficient among these filters.This systemhas the advantages of small size and snapshot imaging. We propose a novel inter and intra prior learning unfolding framework proposed to achieve high-quality SWIR hyperspectral image reconstruction, which bridges the gap between prior learning and cross-stage information interaction. We also design an adaptive feature transfer mechanism to adaptively the transfer contextual correlation of multi-scale encoder features to prevent detailed information loss in the decoder. Experiment results demonstrate that our method can reconstruct HSI with high speed and superior performance over existing methods.
Abstract:This paper presents a deep learning-based spectral demosaicing technique trained in an unsupervised manner. Many existing deep learning-based techniques relying on supervised learning with synthetic images, often underperform on real-world images especially when the number of spectral bands increases. According to the characteristics of the spectral mosaic image, this paper proposes a mosaic loss function, the corresponding model structure, a transformation strategy, and an early stopping strategy, which form a complete unsupervised spectral demosaicing framework. A challenge in real-world spectral demosaicing is inconsistency between the model parameters and the computational resources of the imager. We reduce the complexity and parameters of the spectral attention module by dividing the spectral attention tensor into spectral attention matrices in the spatial dimension and spectral attention vector in the channel dimension, which is more suitable for unsupervised framework. This paper also presents Mosaic25, a real 25-band hyperspectral mosaic image dataset of various objects, illuminations, and materials for benchmarking. Extensive experiments on synthetic and real-world datasets demonstrate that the proposed method outperforms conventional unsupervised methods in terms of spatial distortion suppression, spectral fidelity, robustness, and computational cost.
Abstract:Division-of-focal-plane (DoFP) polarization imaging technical recently has been applied in many fields. However, the images captured by such sensors cannot be used directly because they suffer from instantaneous field-of-view errors and low resolution problem. This paper builds a fast DoFP demosaicing system with proposed progressive polarization demosaicing convolutional neural network (PPDN), which is specifically designed for edge-side GPU devices like Navidia Jetson TX2. The proposed network consists of two parts: reconstruction stage and refining stage. The former recovers four polarization channels from a single DoFP image. The latter fine-tune the four channels to obtain more accurate polarization information. PPDN can be implemented in another version: PPDN-L (large), for the platforms of high computing resources. Experiments show that PPDN can compete with the best existing methods with fewer parameters and faster inference speed and meet the real-time demands of imaging system.