Abstract:This paper addresses the challenge of enhancing artificial intelligence reasoning capabilities, focusing on logicality within the Abstraction and Reasoning Corpus (ARC). Humans solve such visual reasoning tasks based on their observations and hypotheses, and they can explain their solutions with a proper reason. However, many previous approaches focused only on the grid transition and it is not enough for AI to provide reasonable and human-like solutions. By considering the human process of solving visual reasoning tasks, we have concluded that the thinking process is likely the abductive reasoning process. Thus, we propose a novel framework that symbolically represents the observed data into a knowledge graph and extracts core knowledge that can be used for solution generation. This information limits the solution search space and helps provide a reasonable mid-process. Our approach holds promise for improving AI performance on ARC tasks by effectively narrowing the solution space and providing logical solutions grounded in core knowledge extraction.
Abstract:The existing methods for evaluating the inference abilities of Large Language Models (LLMs) have been results-centric, making it difficult to assess the inference process. We introduce a new approach using the Abstract and Reasoning Corpus (ARC) dataset to evaluate the inference and contextual understanding abilities of large language models in a process-centric manner. ARC demands rigorous logical structures for problem-solving, making it a benchmark that facilitates the comparison of model inference abilities with humans. Experimental results confirm that while large language models possess weak inference abilities, they still lag in terms of logical coherence, compositionality, and productivity. Our experiments highlight the reasoning capabilities of LLMs, proposing development paths for achieving human-level reasoning.