Abstract:Visual grounding seeks to localize the image region corresponding to a free-form text description. Recently, the strong multimodal capabilities of Large Vision-Language Models (LVLMs) have driven substantial improvements in visual grounding, though they inevitably require fine-tuning and additional model components to explicitly generate bounding boxes or segmentation masks. However, we discover that a few attention heads in frozen LVLMs demonstrate strong visual grounding capabilities. We refer to these heads, which consistently capture object locations related to text semantics, as localization heads. Using localization heads, we introduce a straightforward and effective training-free visual grounding framework that utilizes text-to-image attention maps from localization heads to identify the target objects. Surprisingly, only three out of thousands of attention heads are sufficient to achieve competitive localization performance compared to existing LVLM-based visual grounding methods that require fine-tuning. Our findings suggest that LVLMs can innately ground objects based on a deep comprehension of the text-image relationship, as they implicitly focus on relevant image regions to generate informative text outputs. All the source codes will be made available to the public.
Abstract:Large multimodal models (LMMs) "see" images by leveraging the attention mechanism between text and visual tokens in the transformer decoder. Ideally, these models should focus on key visual information relevant to the text token. However, recent findings indicate that LMMs have an extraordinary tendency to consistently allocate high attention weights to specific visual tokens, even when these tokens are irrelevant to the corresponding text. In this study, we investigate the property behind the appearance of these irrelevant visual tokens and examine their characteristics. Our findings show that this behavior arises due to the massive activation of certain hidden state dimensions, which resembles the attention sink found in language models. Hence, we refer to this phenomenon as the visual attention sink. In particular, our analysis reveals that removing the irrelevant visual sink tokens does not impact model performance, despite receiving high attention weights. Consequently, we recycle the attention to these tokens as surplus resources, redistributing the attention budget to enhance focus on the image. To achieve this, we introduce Visual Attention Redistribution (VAR), a method that redistributes attention in image-centric heads, which we identify as innately focusing on visual information. VAR can be seamlessly applied across different LMMs to improve performance on a wide range of tasks, including general vision-language tasks, visual hallucination tasks, and vision-centric tasks, all without the need for additional training, models, or inference steps. Experimental results demonstrate that VAR enables LMMs to process visual information more effectively by adjusting their internal attention mechanisms, offering a new direction to enhancing the multimodal capabilities of LMMs.
Abstract:Image dehazing, addressing atmospheric interference like fog and haze, remains a pervasive challenge crucial for robust vision applications such as surveillance and remote sensing under adverse visibility. While various methodologies have evolved from early works predicting transmission matrix and atmospheric light features to deep learning and dehazing networks, they innately prioritize dehazing quality metrics, neglecting the need for real-time applicability in time-sensitive domains like autonomous driving. This work introduces FALCON (Frequency Adjoint Link with CONtinuous density mask), a single-image dehazing system achieving state-of-the-art performance on both quality and speed. Particularly, we develop a novel bottleneck module, namely, Frequency Adjoint Link, operating in the frequency space to globally expand the receptive field with minimal growth in network size. Further, we leverage the underlying haze distribution based on the atmospheric scattering model via a Continuous Density Mask (CDM) which serves as a continuous-valued mask input prior and a differentiable auxiliary loss. Comprehensive experiments involving multiple state-of-the-art methods and ablation analysis demonstrate FALCON's exceptional performance in both dehazing quality and speed (i.e., >$180 frames-per-second), quantified by metrics such as FPS, PSNR, and SSIM.
Abstract:Significant methodological strides have been made toward Chest X-ray (CXR) understanding via modern vision-language models (VLMs), demonstrating impressive Visual Question Answering (VQA) and CXR report generation abilities. However, existing CXR understanding frameworks still possess several procedural caveats. (1) Previous methods solely use CXR reports, which are insufficient for comprehensive Visual Question Answering (VQA), especially when additional health-related data like medication history and prior diagnoses are needed. (2) Previous methods use raw CXR reports, which are often arbitrarily structured. While modern language models can understand various text formats, restructuring reports for clearer, organized anatomy-based information could enhance their usefulness. (3) Current evaluation methods for CXR-VQA primarily emphasize linguistic correctness, lacking the capability to offer nuanced assessments of the generated answers. In this work, to address the aforementioned caveats, we introduce WoLF, a Wide-scope Large Language Model Framework for CXR understanding. To resolve (1), we capture multi-faceted records of patients, which are utilized for accurate diagnoses in real-world clinical scenarios. Specifically, we adopt the Electronic Health Records (EHR) to generate instruction-following data suited for CXR understanding. Regarding (2), we enhance report generation performance by decoupling knowledge in CXR reports based on anatomical structure even within the attention step via masked attention. To address (3), we introduce an AI-evaluation protocol optimized for assessing the capabilities of LLM. Through extensive experimental validations, WoLF demonstrates superior performance over other models on MIMIC-CXR in the AI-evaluation arena about VQA (up to +9.47%p mean score) and by metrics about report generation (+7.3%p BLEU-1).