Abstract:An important factor in the practical implementation of optimization models is the acceptance by the intended users. This is influenced among other factors by the interpretability of the solution process. Decision rules that meet this requirement can be generated using the framework for inherently interpretable optimization models. In practice, there is often uncertainty about the parameters of an optimization problem. An established way to deal with this challenge is the concept of robust optimization. The goal of our work is to combine both concepts: to create decision trees as surrogates for the optimization process that are more robust to perturbations and still inherently interpretable. For this purpose we present suitable models based on different variants to model uncertainty, and solution methods. Furthermore, the applicability of heuristic methods to perform this task is evaluated. Both approaches are compared with the existing framework for inherently interpretable optimization models.
Abstract:For optimization models to be used in practice, it is crucial that users trust the results. A key factor in this aspect is the interpretability of the solution process. A previous framework for inherently interpretable optimization models used decision trees to map instances to solutions of the underlying optimization model. Based on this work, we investigate how we can use more general optimization rules to further increase interpretability and at the same time give more freedom to the decision maker. The proposed rules do not map to a concrete solution but to a set of solutions characterized by common features. To find such optimization rules, we present an exact methodology using mixed-integer programming formulations as well as heuristics. We also outline the challenges and opportunities that these methods present. In particular, we demonstrate the improvement in solution quality that our approach offers compared to existing frameworks for interpretable optimization and we discuss the relationship between interpretability and performance. These findings are supported by experiments using both synthetic and real-world data.