Abstract:In this paper, an Ultra-Wideband (UWB) positioning system is introduced, that leverages six identical custom-designed boards, each featuring an ESP32 microcontroller and a DWM3000 module from Quorvo. The system is capable of achieving localization with an accuracy of up to 10 cm, by utilizing Two-Way-Ranging (TWR) measurements between one designated tag and five anchor devices. The gathered distance measurements are subsequently processed by an Extended Kalman Filter (EKF) running locally on the tag board, enabling it to determine its own position, relying on fixed, a priori known positions of the anchor boards. This paper presents a comprehensive overview of the systems architecture, the key components, and the capabilities it offers for indoor positioning and tracking applications.
Abstract:Big data has had a great share in the success of deep learning in computer vision. Recent works suggest that there is significant further potential to increase object detection performance by utilizing even bigger datasets. In this paper, we introduce the EuroCity Persons dataset, which provides a large number of highly diverse, accurate and detailed annotations of pedestrians, cyclists and other riders in urban traffic scenes. The images for this dataset were collected on-board a moving vehicle in 31 cities of 12 European countries. With over 238200 person instances manually labeled in over 47300 images, EuroCity Persons is nearly one order of magnitude larger than person datasets used previously for benchmarking. The dataset furthermore contains a large number of person orientation annotations (over 211200). We optimize four state-of-the-art deep learning approaches (Faster R-CNN, R-FCN, SSD and YOLOv3) to serve as baselines for the new object detection benchmark. In experiments with previous datasets we analyze the generalization capabilities of these detectors when trained with the new dataset. We furthermore study the effect of the training set size, the dataset diversity (day- vs. night-time, geographical region), the dataset detail (i.e. availability of object orientation information) and the annotation quality on the detector performance. Finally, we analyze error sources and discuss the road ahead.
Abstract:ChemgaPedia is a multimedia, webbased eLearning service platform that currently contains about 18.000 pages organized in 1.700 chapters covering the complete bachelor studies in chemistry and related topics of chemistry, pharmacy, and life sciences. The eLearning encyclopedia contains some 25.000 media objects and the eLearning platform provides services such as virtual and remote labs for experiments. With up to 350.000 users per month the platform is the most frequently used scientific educational service in the German spoken Internet. In this demo we show the benefit of mapping the static eLearning contents of ChemgaPedia to a Linked Data representation for Semantic Chemistry which allows for generating dynamic eLearning paths tailored to the semantic profiles of the users.