Abstract:Online learning and model reference adaptive control have many interesting intersections. One area where they differ however is in how the algorithms are analyzed and what objective or metric is used to discriminate "good" algorithms from "bad" algorithms. In adaptive control there are usually two objectives: 1) prove that all time varying parameters/states of the system are bounded, and 2) that the instantaneous error between the adaptively controlled system and a reference system converges to zero over time (or at least a compact set). For online learning the performance of algorithms is often characterized by the regret the algorithm incurs. Regret is defined as the cumulative loss (cost) over time from the online algorithm minus the cumulative loss (cost) of the single optimal fixed parameter choice in hindsight. Another significant difference between the two areas of research is with regard to the assumptions made in order to obtain said results. Adaptive control makes assumptions about the input-output properties of the control problem and derives solutions for a fixed error model or optimization task. In the online learning literature results are derived for classes of loss functions (i.e. convex) while a priori assuming that all time varying parameters are bounded, which for many optimization tasks is not unrealistic, but is a non starter in control applications. In this work we discuss these differences in detail through the regret based analysis of gradient descent for convex functions and the control based analysis of a streaming regression problem. We close with a discussion about the newly defined paradigm of online adaptive control and ask the following question "Are regret optimal control strategies deployable?"
Abstract:Gradient based optimization algorithms deployed in Machine Learning (ML) applications are often analyzed and compared by their convergence rates or regret bounds. While these rates and bounds convey valuable information they don't always directly translate to stability guarantees. Stability and similar concepts, like robustness, will become ever more important as we move towards deploying models in real-time and safety critical systems. In this work we build upon the results in Gaudio et al. 2021 and Moreu and Annaswamy 2022 for second order gradient descent when applied to explicitly time varying cost functions and provide more general stability guarantees. These more general results can aid in the design and certification of these optimization schemes so as to help ensure safe and reliable deployment for real-time learning applications. We also hope that the techniques provided here will stimulate and cross-fertilize the analysis that occurs on the same algorithms from the online learning and stochastic optimization communities.