Abstract:Data-driven simulation surrogates help computational scientists study complex systems. They can also help inform impactful policy decisions. We introduce a learning framework for surrogate modeling where language is used to interface with the underlying system being simulated. We call a language description of a system a "system caption", or SysCap. To address the lack of datasets of paired natural language SysCaps and simulation runs, we use large language models (LLMs) to synthesize high-quality captions. Using our framework, we train multimodal text and timeseries regression models for two real-world simulators of complex energy systems. Our experiments demonstrate the feasibility of designing language interfaces for real-world surrogate models at comparable accuracy to standard baselines. We qualitatively and quantitatively show that SysCaps unlock text-prompt-style surrogate modeling and new generalization abilities beyond what was previously possible. We will release the generated SysCaps datasets and our code to support follow-on studies.
Abstract:Sea surface height observations provided by satellite altimetry since 1993 show a rising rate (3.4 mm/year) for global mean sea level. While on average, sea level has risen 10 cm over the last 30 years, there is considerable regional variation in the sea level change. Through this work, we predict sea level trends 30 years into the future at a 2-degree spatial resolution and investigate the future patterns of the sea level change. We show the potential of machine learning (ML) in this challenging application of long-term sea level forecasting over the global ocean. Our approach incorporates sea level data from both altimeter observations and climate model simulations. We develop a supervised learning framework using fully connected neural networks (FCNNs) that can predict the sea level trend based on climate model projections. Alongside this, our method provides uncertainty estimates associated with the ML prediction. We also show the effectiveness of partitioning our spatial dataset and learning a dedicated ML model for each segmented region. We compare two partitioning strategies: one achieved using domain knowledge, and the other employing spectral clustering. Our results demonstrate that segmenting the spatial dataset with spectral clustering improves the ML predictions.
Abstract:Satellite altimeter observations retrieved since 1993 show that the global mean sea level is rising at an unprecedented rate (3.4mm/year). With almost three decades of observations, we can now investigate the contributions of anthropogenic climate-change signals such as greenhouse gases, aerosols, and biomass burning in this rising sea level. We use machine learning (ML) to investigate future patterns of sea level change. To understand the extent of contributions from the climate-change signals, and to help in forecasting sea level change in the future, we turn to climate model simulations. This work presents a machine learning framework that exploits both satellite observations and climate model simulations to generate sea level rise projections at a 2-degree resolution spatial grid, 30 years into the future. We train fully connected neural networks (FCNNs) to predict altimeter values through a non-linear fusion of the climate model hindcasts (for 1993-2019). The learned FCNNs are then applied to future climate model projections to predict future sea level patterns. We propose segmenting our spatial dataset into meaningful clusters and show that clustering helps to improve predictions of our ML model.