Abstract:Contemporary text-to-speech solutions for accessibility applications can typically be classified into two categories: (i) device-based statistical parametric speech synthesis (SPSS) or unit selection (USEL) and (ii) cloud-based neural TTS. SPSS and USEL offer low latency and low disk footprint at the expense of naturalness and audio quality. Cloud-based neural TTS systems provide significantly better audio quality and naturalness but regress in terms of latency and responsiveness, rendering these impractical for real-world applications. More recently, neural TTS models were made deployable to run on handheld devices. Nevertheless, latency remains higher than SPSS and USEL, while disk footprint prohibits pre-installation for multiple voices at once. In this work, we describe a high-quality compact neural TTS system achieving latency on the order of 15 ms with low disk footprint. The proposed solution is capable of running on low-power devices.
Abstract:Motivated by the need of the linking records across various databases, we propose a novel graphical model based classifier that uses a mixture of Poisson distributions with latent variables. The idea is to derive insight into each pair of hypothesis records that match by inferring its underlying latent rate of error using Bayesian Modeling techniques. The novel approach of using gamma priors for learning the latent variables along with supervised labels is unique and allows for active learning. The naive assumption is made deliberately as to the independence of the fields to propose a generalized theory for this class of problems and not to undermine the hierarchical dependencies that could be present in different scenarios. This classifier is able to work with sparse and streaming data. The application to record linkage is able to meet several challenges of sparsity, data streams and varying nature of the data-sets.